3,265 research outputs found

    Recent Progress in Plasmonic Colour Filters for Image Sensor and Multispectral Applications

    Get PDF
    Using nanostructured thin metal films as colour filters offers several important advantages, in particular high tunability across the entire visible spectrum and some of the infrared region, and also compatibility with conventional CMOS processes. Since 2003, the field of plasmonic colour filters has evolved rapidly and several different designs and materials, or combination of materials, have been proposed and studied. In this paper we present a simulation study for a single- step lithographically patterned multilayer structure able to provide competitive transmission efficiencies above 40% and contemporary FWHM of the order of 30 nm across the visible spectrum. The total thickness of the proposed filters is less than 200 nm and is constant for every wavelength, unlike e.g. resonant cavity-based filters such as Fabry-Perot that require a variable stack of several layers according to the working frequency, and their passband characteristics are entirely controlled by changing the lithographic pattern. It will also be shown that a key to obtaining narrow-band optical response lies in the dielectric environment of a nanostructure and that it is not necessary to have a symmetric structure to ensure good coupling between the SPPs at the top and bottom interfaces. Moreover, an analytical method to evaluate the periodicity, given a specific structure and a desirable working wavelength, will be proposed and its accuracy demonstrated. This method conveniently eliminate the need to optimize the design of a filter numerically, i.e. by running several time-consuming simulations with different periodicities. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Polarization Sensor Design for Biomedical Applications

    Get PDF
    Advances in fabrication technology have enabled the development of compact, rigid polarization image sensors by integrating pixelated polarization filters with standard image sensing arrays. These compact sensors have the capability for allowing new applications across a variety of disciplines, however their design and use may be influenced by many factors. The underlying image sensor, the pixelated polarization filters, and the incident lighting conditions all directly impact how the sensor performs. In this research endeavor, I illustrate how a complete understanding of these factors can lead to both new technologies and applications in polarization sensing. To investigate the performance of the underlying image sensor, I present a new CMOS image sensor architecture with a pixel capable of operation using either measured voltages or currents. I show a detailed noise analysis of both modes, and that, as designed, voltage mode operates with lower noise than current mode. Further, I integrated aluminum nanowires with this sensor post fabrication, realizing the design of a compact CMOS sensor with polarization sensitivity. I describe a full set of experiments designed as a benchmark to evaluate the performance of compact, integrated polarization sensors. I use these tests to evaluate for incident intensity, wavelength, focus, and polarization state, demonstrating the accuracy and limitations of polarization measurements with such a compact sensor. Using these as guides, I present two novel biomedical applications that rely on the compact, real-time nature of compact integrated polarimeters. I first demonstrate how these sensors can be used to measure the dynamics of soft tissue in real-time, with no moving parts or complex optical alignment. I used a 2 megapixel integrated polarization sensor to measure the direction and strength of alignment in a bovine flexor tendon at over 20 frames per second, with results that match the current method of rotating polarizers. Secondly, I present a new technique for optical neural recording that uses intrinsic polarization reflectance and requires no fluorescent dyes or electrodes. Exposing the antennal lobe of the locust Schistocerca americana, I was able to measure a change in the polarization reflectance during the introduction of the odors hexanol and octanol with the integrated CMOS polarization sensor

    Noise in laser speckle correlation and imaging techniques

    Get PDF
    We study the noise of the intensity variance and of the intensity correlation and structure functions measured in light scattering from a random medium in the case when these quantities are obtained by averaging over a finite number N of pixels of a digital camera. We show that the noise scales as 1/N in all cases and that it is sensitive to correlations of signals corresponding to adjacent pixels as well as to the effective time averaging (due to the finite sampling time) and spatial averaging (due to the finite pixel size). Our results provide a guide to estimation of noise level in such applications as the multi-speckle dynamic light scattering, time-resolved correlation spectroscopy, speckle visibility spectroscopy, laser speckle imaging etc.Comment: submitted 14 May 201

    Polarization Imaging Sensors in Advanced Feature CMOS Technologies

    Get PDF
    The scaling of CMOS technology, as predicted by Moore\u27s law, has allowed for realization of high resolution imaging sensors and for the emergence of multi-mega-pixel imagers. Designing imaging sensors in advanced feature technologies poses many challenges especially since transistor models do not accurately portray their performance in these technologies. Furthermore, transistors fabricated in advanced feature technologies operate in a non-conventional mode known as velocity saturation. Traditionally, analog designers have been discouraged from designing circuits in this mode of operation due to the low gain properties in single transistor amplifiers. Nevertheless, velocity saturation will become even more prominent mode of operation as transistors continue to shrink and warrants careful design of circuits that can exploit this mode of operation. In this research endeavor, I have utilized velocity saturation mode of operation in order to realize low noise imaging sensors. These imaging sensors incorporate low noise analog circuits at the focal plane in order to improve the signal to noise ratio and are fabricated in 0.18 micron technology. Furthermore, I have explored nanofabrication techniques for realizing metallic nanowires acting as polarization filters. These nanoscopic metallic wires are deposited on the surface of the CMOS imaging sensor in order to add polarization sensitivity to the CMOS imaging sensor. This hybrid sensor will serve as a test bed for exploring the next generation of low noise and highly sensitive polarization imaging sensors

    Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Get PDF
    The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.This work has been funded in part by the Fondo Europeo de Desarrollo Regional (FEDER); by the Ministerio de Economia y Competitividad under project TEC2015-638263-C03-1-R; by the Gobierno Vasco/Eusko Jaurlaritza under projects IT933-16 and ELKARTEK (KK-2016/0030 and KK-2016/0059

    Spectral and Temporal Interrogation of Cerebral Hemodynamics Via High Speed Laser Speckle Contrast Imaging

    Get PDF
    Laser Speckle Contrast Imaging (LSCI) is a non-scanning wide field-of-view optical imaging technique specifically developed for cerebral blood flow (CBF) monitoring. In this project, a versatile Laser speckle contrast imaging system has been designed and developed to monitor CBF changes and examine the physical properties of cerebral vasculature during functional brain activation experiments. The hardware of the system consists of a high speed CMOS camera, a coherent light source, a trinocular microscope, and a PC that does camera controlling and data storage. The simplicity of the system’s hardware makes it suitable for biological experiments. In controlled flow experiments using a custom made microfluidic channel, the linearity of the CBF estimates was evaluated under high speed imaging settings. Under the camera exposure time setting in the range of tens of micro-seconds, results show a linear relationship between the CBF estimates and the flow rates within the microchannel. This validation permitted LSCI to be used in high frame rate imaging and the method is only limited by the camera speed. In an in vivo experiment, the amount of oxygen intake via breathing by a rat was reduced to 12% to induce the dilation of the vessels. Results demonstrated a positive correlation between the system’s CBF estimates and the pulse wave velocity derived from aortic blood pressure. To exemplify the instantaneous pulsatility flow study acquired at high sampling rate, a pulsatile cerebral blood flow analysis was conducted on two vessels, an arteriole and a venule. The pulsatile waveform results, captured under sampling rate close to 2000 Hz. The pulse of the arteriole rises 13ms faster than the pulse of the venule, and it takes 6ms longer for the pulse of the arteriole to fall below the lower fall-time boundary. By using the second order derivative (accelerated) CBF estimates, the vascular stiffness was evaluated. Results show the arteriole and the venule have increased-vascular-stiffness indices of 0.95 and 0.74. On the other side, the arteriole and the venule have decreased-vascular-stiffness indices of 0.125 and 0.35. Both vascular stiffness indices suggested that the wall of arteriole is more rigid than the venule. The proposed LSCI system can monitor the mean flow over function activation experiment, and the interrogation of blood flow in terms of physiological oscillations. The proposed vascular stiffness metrics for estimating the stroke preliminary symptom, may eventually lead to insights of stroke and its causes

    High-sensitivity analysis of polarization by surface reflection

    Get PDF
    © 2018, The Author(s). The exploitation of polarization information in the field of computer vision has become progressively more popular during the last few decades. This is primarily due to (1) the fact that polarization is a source of mostly untapped information for machine vision; (2) the relative computational ease by which geometrical information about a scene (e.g.surface normals) may be extracted from polarization data; and (3) the recent introduction of camera hardware able to capture polarization data in real time. The motivation for this paper is that a detailed quantitative study into the precision of polarization measurements with respect to expectation has yet to be performed. The paper therefore presents a detailed analysis and optimization of the key aspects of data capture necessary to acquire the most precise (as opposed to fast) results for the benefit of future research into the field of “polarization vision.” The paper mainly focuses on a rotating polarizer method as this is shown to be the most accurate for high-sensitivity measurements. Commercial polarization cameras by contrast generally sacrifice precision for the benefit of much shorter capture times. That said, the paper reviews the state of the art in polarization camera technology and quantitatively evaluates the performance of one such camera: the Fraunhofer “POLKA.”
    • …
    corecore