547 research outputs found

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Integrated Fault-Tolerant Control for Close Formation Flight

    Get PDF
    This paper investigates the position-tracking and attitude-tracking control problem of close formation flight with vortex effects under simultaneous actuator and sensor faults. On the basis of the estimated state and fault information from unknown input observers and relative output information from neighbors, an integration of decentralized fault estimation and distributed fault-tolerant control is developed to deal with bidirectional interactions and to guarantee the asymptotic stability and H_\infty performance of close formations

    Optimal fault-tolerant flight control for aircraft with actuation impairments

    Get PDF
    Current trends towards greater complexity and automation are leaving modern technological systems increasingly vulnerable to faults. Without proper action, a minor error may lead to devastating consequences. In flight control, where the controllability and dynamic stability of the aircraft primarily rely on the control surfaces and engine thrust, faults in these effectors result in a higher extent of risk for these aspects. Moreover, the operation of automatic flight control would be suddenly disturbed. To address this problem, different methodologies of designing optimal flight controllers are presented in this thesis. For multiple-input multiple-output (MIMO) systems, the feedback optimal control is a prominent technique that solves a multi-objective cost function, which includes, for instance, tracking requirements and control energy minimisation. The first proposed method is based on a linear quadratic regulator (LQR) control law augmented with a fault-compensation scheme. This fault-tolerant system handles the situation in an adaptive way by solving the optimisation cost function and considering fault information, while assuming an effective fault detection system is available. The developed scheme was tested in a six-degrees-of-freedom nonlinear environment to validate the linear-based controller. Results showed that this fault tolerant control (FTC) strategy managed to handle high magnitudes of the actuator’s loss of effciency faults. Although the rise time of aircraft response became slower, overshoot and settling errors were minimised, and the stability of the aircraft was maintained. Another FTC approach has been developed utilising the features of controller robustness against the system parametric uncertainties, without the need for reconfiguration or adaptation. Two types of control laws were established under this scheme, the H∞ and µ-synthesis controllers. Both were tested in a nonlinear environment for three points in the flight envelope: ascending, cruising, and descending. The H∞ controller maintained the requirements in the intact case; while in fault, it yielded non-robust high-frequency control surface deflections. The µ-synthesis, on the other hand, managed to handle the constraints of the system and accommodate faults reaching 30% loss of effciency in actuation. The final approach is based on the control allocation technique. It considers the tracking requirements and the constraints of the actuators in the design process. To accommodate lock-in-place faults, a new control effort redistribution scheme was proposed using the fuzzy logic technique, assuming faults are provided by a fault detection system. The results of simulation testing on a Boeing 747 multi-effector model showed that the system managed to handle these faults and maintain good tracking and stability performance, with some acceptable degradation in particular fault scenarios. The limitations of the controller to handle a high degree of faults were also presented

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults

    Fault-Tolerant Control with Applications to Aircraft Using Linear Quadratic Design Framework

    Get PDF
    Safety is one of the major concerns in the aviation community for both manned aircraft and unmanned aerial vehicles (UAVs). The safety issue of manned aircraft, such as commercial aircraft, has drawn great attentions especially after a series of disasters in recent decades. Safety and reliability issues of UAVs have also attracted significant attention due to their highly autonomous feature towards their future civilian applications. Focusing on the improvement of safety and reliability of aircraft, a fault-tolerant control (FTC) system is demanded to utilize the configured redundancy in an effective and efficient manner to increase the survivability of aircraft in the presence of faults/failures. This thesis aims to develop an effective FTC system to improve the security, reliability, and survivability of the faulty aircraft: manned aircraft and UAVs. In particular, the emphases are focused on improving the on-line fault-tolerant capability and the transient performance between faults occurrence and control re-configuration. In the existing fault-tolerant literature, several control approaches are developed to possess fault-tolerant capability in recent decades, such as sliding mode control (SMC), model reference adaptive control (MRAC), and model predictive control (MPC), just as examples. Different strategies have their specific benefits and drawbacks in addressing different aspects of fault-tolerant problems. However, there are still open problems in the fault-tolerant performance improvement, the transient behavior management, consideration of the interaction between FTC and fault detection and diagnosis (FDD), etc. For instance, MPC is recognized as a suitable inherent structure in synthesizing a FTC system due to its capability of addressing faults via solving constraints, reforming cost function, and updating model on-line. However, this on-line FTC capability introduces further challenges in terms of fault problem formulation, on-line computation, transient behavior before reconfiguration is triggered, etc. Designing an efficient FDD is also a challenge topic with respect to time response speed, accuracy, and reliability due to its interaction with a fault-tolerant controller. In the control design framework based on linear quadratic (LQ) cost function formulation, faults can be accommodated in both passive and active way. A passive FTC system is synthesized with a prescribed degree of stability LQ design technique. The state of the post-fault system is obtained through state-augmented extended Kalman filter (SAEKF), which is a combined technique with state and parameter estimation. In terms of reconfiguration capability, MPC is considered as a favorable active FTC strategy. In addition to MPC framework, the improvement of on-line computational efficiency motivates MPC to be used to perform fault-tolerant flight control. Furthermore, a Laguerre-function based MPC (LF-MPC) is presented to enhance the on-line fault-tolerant capability. The modification is based on a series of Laguerre functions to model the control trajectory with fewer parameters. In consequence, the computation load is reduced, which improves the real-time fault-tolerant capability in the framework of MPC. The FTC capability is further improved for accommodating the performance degradation during the transient period before the control reconfiguration. This approach is inspired by exponentially increasing weighting matrix used in linear quadratic regulator (LQR). Two platforms are used to perform the evaluation of the designed FTC system. A quadrotor UAV, named the Qball-X4, is utilized to test FTC designed with exponentially increasing weighing matrix LQ technique and FDD designed with SAEKF. The evaluation is conducted under the task of trajectory tracking in the presence of loss of control effectiveness (LOE) faults of actuators. The modified MPC is utilized to synthesize an active FTC system to accommodate the elevator stuck fault of a Boeing 747-100/200 benchmark model. The exponentially increasing weighing matrix LQ technique is further implemented in LF-MPC framework to improve the fault-tolerant capability before the control reconfiguration. A time delayed FDD is integrated into the evaluation process to present the effectiveness of the proposed FTC strategies. The designed FTC system is evaluated under the emergency landing task in the event of failure of elevators

    Fault-Tolerant Control with Applications to Aircraft Using Linear Quadratic Design Framework

    Get PDF
    Safety is one of the major concerns in the aviation community for both manned aircraft and unmanned aerial vehicles (UAVs). The safety issue of manned aircraft, such as commercial aircraft, has drawn great attentions especially after a series of disasters in recent decades. Safety and reliability issues of UAVs have also attracted significant attention due to their highly autonomous feature towards their future civilian applications. Focusing on the improvement of safety and reliability of aircraft, a fault-tolerant control (FTC) system is demanded to utilize the configured redundancy in an effective and efficient manner to increase the survivability of aircraft in the presence of faults/failures. This thesis aims to develop an effective FTC system to improve the security, reliability, and survivability of the faulty aircraft: manned aircraft and UAVs. In particular, the emphases are focused on improving the on-line fault-tolerant capability and the transient performance between faults occurrence and control re-configuration. In the existing fault-tolerant literature, several control approaches are developed to possess fault-tolerant capability in recent decades, such as sliding mode control (SMC), model reference adaptive control (MRAC), and model predictive control (MPC), just as examples. Different strategies have their specific benefits and drawbacks in addressing different aspects of fault-tolerant problems. However, there are still open problems in the fault-tolerant performance improvement, the transient behavior management, consideration of the interaction between FTC and fault detection and diagnosis (FDD), etc. For instance, MPC is recognized as a suitable inherent structure in synthesizing a FTC system due to its capability of addressing faults via solving constraints, reforming cost function, and updating model on-line. However, this on-line FTC capability introduces further challenges in terms of fault problem formulation, on-line computation, transient behavior before reconfiguration is triggered, etc. Designing an efficient FDD is also a challenge topic with respect to time response speed, accuracy, and reliability due to its interaction with a fault-tolerant controller. In the control design framework based on linear quadratic (LQ) cost function formulation, faults can be accommodated in both passive and active way. A passive FTC system is synthesized with a prescribed degree of stability LQ design technique. The state of the post-fault system is obtained through state-augmented extended Kalman filter (SAEKF), which is a combined technique with state and parameter estimation. In terms of reconfiguration capability, MPC is considered as a favorable active FTC strategy. In addition to MPC framework, the improvement of on-line computational efficiency motivates MPC to be used to perform fault-tolerant flight control. Furthermore, a Laguerre-function based MPC (LF-MPC) is presented to enhance the on-line fault-tolerant capability. The modification is based on a series of Laguerre functions to model the control trajectory with fewer parameters. In consequence, the computation load is reduced, which improves the real-time fault-tolerant capability in the framework of MPC. The FTC capability is further improved for accommodating the performance degradation during the transient period before the control reconfiguration. This approach is inspired by exponentially increasing weighting matrix used in linear quadratic regulator (LQR). Two platforms are used to perform the evaluation of the designed FTC system. A quadrotor UAV, named the Qball-X4, is utilized to test FTC designed with exponentially increasing weighing matrix LQ technique and FDD designed with SAEKF. The evaluation is conducted under the task of trajectory tracking in the presence of loss of control effectiveness (LOE) faults of actuators. The modified MPC is utilized to synthesize an active FTC system to accommodate the elevator stuck fault of a Boeing 747-100/200 benchmark model. The exponentially increasing weighing matrix LQ technique is further implemented in LF-MPC framework to improve the fault-tolerant capability before the control reconfiguration. A time delayed FDD is integrated into the evaluation process to present the effectiveness of the proposed FTC strategies. The designed FTC system is evaluated under the emergency landing task in the event of failure of elevators

    Fault tolerant flight control system design for unmanned aerial vehicles

    Get PDF
    Safety and reliability of air vehicles is of the utmost importance. This is particularly true for large civil transport aircraft where a large number of human lives depend on safety critical design. With the increase in the use of unmanned aerial vehicles (UAVs) in our airspace it is essential that UAV safety is also given attention to prevent devastating failures which could ultimately lead to loss of human lives. While civil aircraft have human operators, the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on board flight computer. Large civil aircraft also have the luxury of weight hence redundant actuators (control surfaces) can be installed and in the event of a faulty set of actuators the redundant actuators can be brought into action to negate the effects of any faults. Again weight is a luxury that UAVs do not have. The main objective of this research is to study the design of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight dynamic equations as opposed to adding hardware redundancies that would result in significant weight increase. This thesis presents new research into fault tolerant control for flight vehicles. Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment. Hence a control method is required that moves away from the traditional fixed structure model where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to study the application of model predictive control (MPC) to fault tolerant control systems. MPC is a model based method where a model of the plant forms an integral part of the controller. An optimisation is performed based on model estimations of the plant and the inputs are chosen via an optimisation process. One of the main contributions of this thesis is the development of a nonlinear model predictive controller for fault tolerant flight control. An aircraft is a highly nonlinear system hence if a nonlinear model can be integrated into the control process the cross-coupling effects of the control surface contributions can be easily exploited. An active fault tolerant control system comprises not only of the fault tolerant controller but also a fault detection and isolation subsystem. A common fault detection method is based on parameter estimation using filtering techniques. The solution proposed in this thesis uses an unscented Kalman filter (UKF) for parameter estimation and controller updates. In summary the main contribution of this thesis is the development of a new active fault tolerant flight control system. This new innovative controller exploits the idea of analytical redundancy as opposed to hardware redundancy. It comprises of a nonlinear model predictive based controller using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore a UKF is incorporated into the design of the active fault tolerant flight control system

    Integrated approaches to handle UAV actuator fault

    Get PDF
    Unmanned AerialVehicles (UAV) has historically shown to be unreliable when compared to their manned counterparts. Part of the reason is they may not be able to a ord the redundancies required to handle faults from system or cost constraints. This research explores instances when actuator fault handling may be improved with integrated approaches for small UAVs which have limited actuator redundancy. The research started with examining the possibility of handling the case where no actuator redundancy remains post fault. Two fault recovery schemes, combing control allocation and hardware means, for a Quad Rotor UAV with no redundancy upon fault event are developed to enable safe emergency landing. Inspired by the integrated approach, a proposed integrated actuator control scheme is developed, and shown to reduce the magnitude of the error dynamics when input saturation faults occur. Geometrical insights to the proposed actuator scheme are obtained. Simulations using an Aerosonde UAV model with the proposed scheme showed significant improvements to the fault tolerant stuck fault range and improved guidance tracking performance. While much research literature has previously been focused on the controller to handle actuator faults, fault tolerant guidance schemes may also be utilized to accommodate the fault. One possible advantage of using fault tolerant guidance is that it may consider the fault degradation e ects on the overall mission. A fault tolerant guidance reconfiguration method is developed for a path following mission. The method provides an additional degree of freedom in design, which allows more flexibility to the designer to meet mission requirements. This research has provided fresh insights into the handling UAV extremal actuator faults through integrated approaches. The impact of this work is to expand on the possibilities a practitioner may have for improving the fault handling capabilities of a UAV

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    Decentralized receding horizon control of cooperative vehicles with communication delays

    Get PDF
    This thesis investigates the decentralized receding horizon control (DRHC) for a network of cooperative vehicles where each vehicle in the group plans its future trajectory over a finite prediction horizon time. The vehicles exchange their predicted paths with the neighbouring vehicles through a communication channel in order to maintain the cooperation objectives. In this framework, more frequent communication provides improved performance and stability properties. The main focus of this thesis is on situations where large inter-vehicle communication delays are present. Such large delays may occur due to fault conditions with the communication devices or limited communication bandwidth. Large communication delays can potentially lead to poor performance, unsafe behaviour and even instability for the existing DRHC methods. The main objective of this thesis is to develop new DRHC methods that provide improved performance and stability properties in the presence of large communication delays. Fault conditions are defined and diagnosis algorithms are developed for situations with large communication delays. A fault tolerant DRHC architecture is then proposed which is capable of effectively using the delayed information. The main idea with the proposed approach is to estimate the path of the neighbouring faulty vehicles, when they are unavailable due to large delays, by adding extra decision variables to the cost function. It is demonstrated that this approach can result in significant improvements in performance and stability. Furthermore, the concept of the tube DRHC is proposed to provide the safety of the fleet against collisions during faulty conditions. In this approach, a tube shaped trajectory is assumed in the region around the delayed trajectory of the faulty vehicle instead of a line shaped trajectory. The neighbouring vehicles calculate the tube and are not allowed to enter that region. Feasibility, stability, and performance of the proposed fault tolerant DRHC are also investigated. Finally, a bandwidth allocation algorithm is proposed in order to optimize the communication periods so that the overall teaming performance is optimized. Together, these results form a new and effective framework for decentralized receding horizon control with communication faults and large communication delays
    • …
    corecore