326 research outputs found

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Observer-based robust fault estimation for fault-tolerant control

    Get PDF
    A control system is fault-tolerant if it possesses the capability of optimizing the system stability and admissible performance subject to bounded faults, complexity and modeling uncertainty. Based on this definition this thesis is concerned with the theoretical developments of the combination of robust fault estimation (FE) and robust active fault tolerant control (AFTC) for systems with both faults and uncertainties.This thesis develops robust strategies for AFTC involving a joint problem of on-line robust FE and robust adaptive control. The disturbances and modeling uncertainty affect the FE and FTC performance. Hence, the proposed robust observer-based fault estimator schemes are combined with several control methods to achieve the desired system performance and robust active fault tolerance. The controller approaches involve concepts of output feedback control, adaptive control, robust observer-based state feedback control. A new robust FE method has been developed initially to take into account the joint effect of both fault and disturbance signals, thereby rejecting the disturbances and enhancing the accuracy of the fault estimation. This is then extended to encompass the robustness with respect to modeling uncertainty.As an extension to the robust FE and FTC scheme a further development is made for direct application to smooth non-linear systems via the use of linear parameter-varying systems (LPV) modeling.The main contributions of the research are thus:- The development of a robust observer-based FE method and integration design for the FE and AFTC systems with the bounded time derivative fault magnitudes, providing the solution based on linear matrix inequality (LMI) methodology. A stability proof for the integrated design of the robust FE within the FTC system.- An improvement is given to the proposed robust observer-based FE method and integrated design for FE and AFTC systems under the existence of different disturbance structures.- New guidance for the choice of learning rate of the robust FE algorithm.- Some improvement compared with the recent literature by considering the FTC problem in a more general way, for example by using LPV modeling

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust fault tolerant control of induction motor system

    Get PDF
    Research into fault tolerant control (FTC, a set of techniques that are developed to increase plant availability and reduce the risk of safety hazards) for induction motors is motivated by practical concerns including the need for enhanced reliability, improved maintenance operations and reduced cost. Its aim is to prevent that simple faults develop into serious failure. Although, the subject of induction motor control is well known, the main topics in the literature are concerned with scalar and vector control and structural stability. However, induction machines experience various fault scenarios and to meet the above requirements FTC strategies based on existing or more advanced control methods become desirable. Some earlier studies on FTC have addressed particular problems of 3-phase sensor current/voltage FTC, torque FTC, etc. However, the development of these methods lacks a more general understanding of the overall problem of FTC for an induction motor based on a true fault classification of possible fault types.In order to develop a more general approach to FTC for induction motors, i.e. not just designing specific control approaches for individual induction motor fault scenarios, this thesis has carried out a systematic research on induction motor systems considering the various faults that can typically be present, having either “additive” fault or “multiplicative” effects on the system dynamics, according to whether the faults are sensor or actuator (additive fault) types or component or motor faults (multiplicative fault) types.To achieve the required objectives, an active approach to FTC is used, making use of fault estimation (FE, an approach that determine the magnitude of a fault signal online) and fault compensation. This approach of FTC/FE considers an integration of the electrical and mechanical dynamics, initially using adaptive and/or sliding mode observers, Linear Parameter Varying (LPV, in which nonlinear systems are locally decomposed into several linear systems scheduled by varying parameters) and then using back-stepping control combined with observer/estimation methods for handling certain forms of nonlinearity.In conclusion, the thesis proposed an integrated research of induction motor FTC/FE with the consideration of different types of faults and different types of uncertainties, and validated the approaches through simulations and experiments

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling

    Get PDF
    This paper proposes an integrated design of faulttolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modelling uncertainty along with actuator/sensor faults and external disturbance. An augmented state unknown input observer is proposed to estimate the faults and system states simultaneously, and using the estimates an FTC controller is developed to ensure robust stability of the closed-loop system. The main challenge arises from the bi-directional robustness interactions since the fault estimation (FE) and FTC functions have an uncertain effect on each other. The proposed strategy uses a single-step linear matrix inequality formulation to integrate together the designs of FE and FTC functions to satisfy the required robustness. The integrated strategy is demonstrated to be effective through a tutorial example of an inverted pendulum system (based on robust T-S fuzzy designs)

    Ultra Local Nonlinear Unknown Input Observers for Robust Fault Reconstruction

    Get PDF
    In this paper, we present a methodology for actuator and sensor fault estimation in nonlinear systems. The method consists in augmenting the system dynamics with an approximated ultra-local model (a finite chain of integrators) for the fault vector and constructing a Nonlinear Unknown Input Observer (NUIO) for the augmented dynamics. Then, fault reconstruction is reformulated as a robust state estimation problem in the augmented state (true state plus fault-related state). We provide sufficient conditions that guarantee the existence of the observer and stability of the estimation error dynamics (asymptotic stability of the origin in the absence of faults and ISS guarantees in the faulty case). Then, we cast the synthesis of observer gains as a semidefinite program where we minimize the L2-gain from the model mismatch induced by the approximated fault model to the fault estimation error. Finally, simulations are given to illustrate the performance of the proposed methodology

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Unknown input observer approaches to robust fault diagnosis

    Get PDF
    This thesis focuses on the development of the model-based fault detection and isolation /fault detection and diagnosis (FDI/FDD) techniques using the unknown input observer (UIO) methodology. Using the UI de-coupling philosophy to tackle the robustness issue, a set of novel fault estimation (FE)-oriented UIO approaches are developed based on the classical residual generation-oriented UIO approach considering the time derivative characteristics of various faults. The main developments proposed are:- Implement the residual-based UIO design on a high fidelity commercial aircraft benchmark model to detect and isolate the elevator sensor runaway fault. The FDI design performance is validated using a functional engineering simulation (FES) system environment provided through the activity of an EU FP7 project Advanced Fault Diagnosis for Safer Flight Guidance and Control (ADDSAFE).- Propose a linear time-invariant (LTI) model-based robust fast adaptive fault estimator (RFAFE) with UI de-coupling to estimate the aircraft elevator oscillatory faults considered as actuator faults.- Propose a UI-proportional integral observer (UI-PIO) to estimate actuator multiplicative faults based on an LTI model with UI de-coupling and with added H∞ optimisation to reduce the effects of the sensor noise. This is applied to an example on a hydraulic leakage fault (multiplicative fault) in a wind turbine pitch actuator system, assuming that thefirst derivative of the fault is zero. - Develop an UI–proportional multiple integral observer (UI-PMIO) to estimate the system states and faults simultaneously with the UI acting on the system states. The UI-PMIO leads to a relaxed condition of requiring that the first time derivative of the fault is zero instead of requiring that the finite time fault derivative is zero or bounded. - Propose a novel actuator fault and state estimation methodology, the UI–proportional multiple integral and derivative observer (UI-PMIDO), inspired by both of the RFAFE and UI-PMIO designs. This leads to an observer with the comprehensive feature of estimating faults with bounded finite time derivatives and ensuring fast FE tracking response.- Extend the UI-PMIDO theory based on LTI modelling to a linear parameter varying (LPV) model approach for FE design. A nonlinear two-link manipulator example is used to illustrate the power of this method
    corecore