140,114 research outputs found

    Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    Get PDF
    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment

    Gamma Ray Measurements Using Unmanned Aerial Systems

    Get PDF
    Gamma ray measurements involved in monitoring technologies of field conditions are of vital importance for environmental safety and radiation protection. This chapter addresses the method of cooperative gamma sensing using multiple unmanned aerial systems. Section 1 provides an introduction. The design of semiconductor and scintillation gamma ray sensors integrated into aerial robotic platforms is discussed in Section 2, along with the fusion of time-stamped radiation data with position information using the real-time kinematic positioning technique. Section 3 addresses the multirobot contour mapping of radiation fields. Computer simulation of radiation contour mapping is discussed in Section 4. Experimental verification of the contour mapping and source-seeking algorithm is described in Section 5. Section 6 summarizes results of the project

    Integrated Real-Virtuality System and Environments for Advanced Control System Developers and Machines Builders

    Get PDF
    The pace of technological change is increasing and sophisticated customer driven markets are forcing rapid machine evolution, increasing complexity and quality, and faster response. To survive and thrive in these markets, machine builders/suppliers require absolute customer and market orientation, focusing on .. rapid provision of solutions rather than products. Their production systems will need to accommodate unpredictable changes while maintaining financial and operational efficiency with short lead and delivery times. Real-Virtuality (R-V) systems are an innovative environment to address these requirements by facilitating enhanced support in machine system design utilising integrated real-virtual environments centred on concurrent machine system development and realization. This environment supports not only machine system design but also the development of the' control system at the same time. Utilising the Real-Virtual Mapping Environment (RVMI;:), 3-D simulation machine models can perform actual machine operations in real-time when coupled with the real machine controller. This provides a more understandable, reliable and transparent machine function and performance. The research study explores different types of controller verification methods and proposes a new method which employs the use of a control signal emulator. The research study has fomulated a novel technique for emulating quadrature encoder signals to provide virtual closed loop control of servomotors. The deployment of a control signal emulator technique makes the system unique and removes its dependency on specific hardware. Enabling the real-time data from the signal emulation environment eases the task of realising a real-time machine simulator. To evaluate the proposed architecture, three case studies were performed. The results have shown that it is possible to create verified and validated machine control programs with no modification needed when applied to the real machine. The migration from the virtual to the real world is totally seamless. The result from the ????study show that the virtual machine is able to operate and respond as a real machine in real-time. This opens up the unexplored potential of integrated 3-D virtual technology. The real-time 3-D simulation virtual machine will enable commissioning and training to be conducted '!-t an earlier stage in the design process (without having to wait for the real machine to be built). Furthermore, various test scenarios can also be developed and tested on the system which helps to provide a better lofriderstanding of the machine behaviours and responses. This research study has made an original contribution in the field of machine system development. It has contributed a novel approach of using emulated control signals to provide machine control programmers with a platform to test their application programs at machine level which involves both discrete digital signals and continuous signals. The real-time virtual environment extends the application domain for the use of simulation. The architecture proposed is generic; to be exact it is not constrained to a specific industrial control system or to a specific simulation vendor

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements ¿ the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    Software for Embedded Control Systems

    Get PDF
    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanical system and its embedded control system). The ultimate goal is to support the application developer (i.e. mechatronic design engineer) such that implementing control software according to ðo it the first time right¿ becomes business as usual
    corecore