8,083 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Towards a conceptual design of intelligent material transport using artificial intelligence

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matla

    Koncepcijsko projektiranje inteligentnog unutarnjeg transporta materijala korištenjem umjetne inteligencije

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matlab© software package is used for developing genetic algorithms, manufacturing process simulation, implementing search algorithms and neural network training. The obtained paths are tested by means of the Khepera II mobile robot system within a static laboratory model of manufacturing environment. The experiment results clearly show that an intelligent mobile robot can follow paths generated by using genetic algorithms as well as learn and predict optimal material transport flows thanks to using neural networks. The achieved positioning error of the mobile robot indicates that the conceptual design approach based on the axiomatic design theory can be used for designing the material transport and handling tasks in intelligent manufacturing systems.Pouzdan i efikasan transport materijala je jedan od ključnih zahtjeva koji utječe na povećanje produktivnosti u industriji. Iz tog razloga, u radu su predložena dva pristupa za inteligentan transport materijala korištenjem mobilnog robota. Prvi pristup se zasniva na primjeni genetskih algoritama za optimizaciju tehnoloških procesa. Optimalna putanja se dobiva korištenjem optimalnih tehnoloških procesa i genetskih algoritama za vremensko planiranje, uz minimalno vrijeme kao kriterij. Drugi pristup je temeljen na primjeni teorije grafova za generiranje putanja i neuronskih mreža za učenje generirane putanje. Matlab© softverski paket je korišten za razvoj genetskih algoritama, simulaciju tehnoloških procesa, implementaciju algoritama pretraživanja i obučavanje neuronskih mreža. Dobivene putanje su testirane pomoću Khepera II mobilnog robota u statičkom laboratorijskom modelu tehnološkog okruženja. Eksperimentalni rezultati pokazuju kako inteligentni mobilni robot prati putanje generirane korištenjem genetskih algoritama, kao i da uči i predviđa optimalne tokove materijala zahvaljujući neuronskim mrežama. Ostvarena pogreška pozicioniranja mobilnog robota ukazuje da se koncepcijski pristup baziran na aksiomatskoj teoriji projektiranja može koristiti u projektiranju transporta i manipulacije u inteligentnom tehnološkom sustavu

    Towards a conceptual design of intelligent material transport using artificial intelligence

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in industry. For that reason, in this paper two approaches are proposed for the task of intelligent material transport by using a mobile robot. The first approach is based on applying genetic algorithms for optimizing process plans. Optimized process plans are passed to the genetic algorithm for scheduling which generate an optimal job sequence by using minimal makespan as criteria. The second approach uses graph theory for generating paths and neural networks for learning generated paths. The Matla

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    SIMULTANEOUS ROUTING AND LOADING METHOD FOR MILK-RUN USING HYBRID GENETIC SEARCH ALGORITHM

    Get PDF
    Milk-run methodology is proposed to manage the procurement of orders from suppliers. The heuristic solution methods in the literature generally apply stepwise approach to route and load the vehicles. In this study we propose a hybrid genetic local search algorithm which simultaneous solves vehicle routing and order loading problems. This is the main contribution of the study. We consider volume and weight capacities (multi capacitated) of different types of transportation vehicles (heterogeneous fleet). Because of high adaptability and easy utilization, genetic algorithms are the most preferred approach of meta-heuristics. The chromosome structure of the proposed genetic algorithm is constituted by random numbers to eliminate infeasibility. The best chromosome of each generation is improved using local search method during the algorithm runs. We applied the algorithm to a real manufacturing company that produces welding robots and other process automation equipment. The results showed the effectiveness of the algorithm

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research
    corecore