536 research outputs found

    PHYSICS-BASED MODELING AND CONTROL OF POWERTRAIN SYSTEMS INTEGRATED WITH LOW TEMPERATURE COMBUSTION ENGINES

    Get PDF
    Low Temperature Combustion (LTC) holds promise for high thermal efficiency and low Nitrogen Oxides (NOx) and Particulate Matter (PM) exhaust emissions. Fast and robust control of different engine variables is a major challenge for real-time model-based control of LTC. This thesis concentrates on control of powertrain systems that are integrated with a specific type of LTC engines called Homogenous Charge Compression Ignition (HCCI). In this thesis, accurate mean value and dynamic cycleto- cycle Control Oriented Models (COMs) are developed to capture the dynamics of HCCI engine operation. The COMs are experimentally validated for a wide range of HCCI steady-state and transient operating conditions. The developed COMs can predict engine variables including combustion phasing, engine load and exhaust gas temperature with low computational requirements for multi-input multi-output realtime HCCI controller design. Different types of model-based controllers are then developed and implemented on a detailed experimentally validated physical HCCI engine model. Control of engine output and tailpipe emissions are conducted using two methodologies: i) an optimal algorithm based on a novel engine performance index to minimize engine-out emissions and exhaust aftertreatment efficiency, and ii) grey-box modeling technique in combination with optimization methods to minimize engine emissions. In addition, grey-box models are experimentally validated and their prediction accuracy is compared with that from black-box only or clear-box only models. A detailed powertrain model is developed for a parallel Hybrid Electric Vehicle (HEV) integrated with an HCCI engine. The HEV model includes sub-models for different HEV components including Electric-machine (E-machine), battery, transmission system, and Longitudinal Vehicle Dynamics (LVD). The HCCI map model is obtained based on extensive experimental engine dynamometer testing. The LTC-HEV model is used to investigate the potential fuel consumption benefits archived by combining two technologies including LTC and electrification. An optimal control strategy including Model Predictive Control (MPC) is used for energy management control in the studied parallel LTC-HEV. The developed HEV model is then modified by replacing a detailed dynamic engine model and a dynamic clutch model to investigate effects of powertrain dynamics on the HEV energy consumption. The dynamics include engine fuel flow dynamics, engine air flow dynamics, engine rotational dynamics, and clutch dynamics. An enhanced MPC strategy for HEV torque split control is developed by incorporating the effects of the studied engine dynamics to save more energy compared to the commonly used map-based control strategies where the effects of powertrain dynamics are ignored. LTC is promising for reduction in fuel consumption and emission production however sophisticated multi variable engine controllers are required to realize application of LTC engines. This thesis centers on development of model-based controllers for powertrain systems with LTC engines

    Optical study of flow and combustion in an HCCI engine with negative valve overlap

    Get PDF
    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed. © 2006 IOP Publishing Ltd

    Modeling and Model-Based Control Of Multi-Mode Combustion Engines for Closed-Loop SI/HCCI Mode Transitions with Cam Switching Strategies.

    Full text link
    Homogeneous charge compression ignition (HCCI) combustion has been investigated by many researchers as a way to improve gasoline engine fuel economy through highly dilute unthrottled operation while maintaining acceptable tailpipe emissions. A major concern for successful implementation of HCCI is that it's feasible operating region is limited to a subset of the full engine regime, which necessitates mode transitions between HCCI and traditional spark ignition (SI) combustion when the HCCI region is entered/exited. The goal of this dissertation is to develop a methodology for control-oriented modeling and model-based feedback control during such SI/HCCI mode transitions. The model-based feedback control approach is sought as an alternative to those in the SI/HCCI transition literature, which predominantly employ open-loop experimentally derived actuator sequences for generation of control input trajectories. A model-based feedback approach has advantages both for calibration simplicity and controller generality, in that open-loop sequences do not have to be tuned, and that use of nonlinear model-based calculations and online measurements allows the controller to inherently generalize across multiple operating points and compensate for case-by-case disturbances. In the dissertation, a low-order mean value modeling approach for multi-mode SI/HCCI combustion that is tractable for control design is described, and controllers for both the SI to HCCI (SI-HCCI) and HCCI to SI (HCCI-SI) transition are developed based on the modeling approach. The model is shown to fit a wide range of steady-state actuator sweep data containing conditions pertinent to SI/HCCI mode transitions, and is extended to capture transient SI-HCCI transition data through using an augmented residual gas temperature parameter. The mode transition controllers are experimentally shown to carry out SI-HCCI and HCCI-SI transitions in several operating conditions with minimal tuning, though the validation in the SI-HCCI direction is more extensive. The model-based control architecture is also equipped with an online parameter updating routine, to attenuate error in model-based calculations and improve robustness to engine aging and cylinder to cylinder variability. Experimental examples at multiple operating conditions illustrate the ability of the parameter update routine to improve controller performance by using transient data to tune the model parameters for enhanced accuracy during SI-HCCI mode transitions.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113351/1/pgoz_1.pd

    The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

    Get PDF
    The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low-load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the autoignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer. The heat transfer to the combustion chamber walls is affected by parameters such as area-to-volume ratio and in-cylinder gas motion, i.e., turbulence. In this paper the performance of three multi-cylinder HCCI engines with different displacements are compared. The engines are a five-cylinder 1.6dmu3 VCR engine, a four-cylinder 2.0dmu3 engine, and a six-cylinder 11.7dmu3 truck engine. All engines are port fuel injected and run with a RON91/MON82 gasoline. Combustion phasing is mainly controlled with inlet air temperature. The engines have about the same indicated efficiency but different brake efficiency. The truck engine has 32.3% brake efficiency at 2 bar BMEP, followed by the 2.0dmu3 engine with 29.8%, and the 1.6dmu3 VCR engine with only 24.4%

    Reactivity controlled compression ignition engine: Pathways towards commercial viability

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).Reactivity-controlled compression ignition (RCCI) is a promising energy conversion strategy to increase fuel efficiency and reduce nitrogen oxide (NOx) and soot emissions through improved in-cylinder combustion process. Considering the significant amount of conducted research and development on RCCI concept, the majority of the work has been performed under steady-state conditions. However, most thermal propulsion systems in transportation applications require operation under transient conditions. In the RCCI concept, it is crucial to investigate transient behavior over entire load conditions in order to minimize the engine-out emissions and meet new real driving emissions (RDE) legislation. This would help further close the gap between steady-state and transient operation in order to implement the RCCI concept into mass production. This work provides a comprehensive review of the performance and emissions analyses of the RCCI engines with the consideration of transient effects and vehicular applications. For this purpose, various simulation and experimental studies have been reviewed implementing different control strategies like control-oriented models particularly in dual-mode operating conditions. In addition, the application of the RCCI strategy in hybrid electric vehicle platforms using renewable fuels is also discussed. The discussion of the present review paper provides important insights for future research on the RCCI concept as a commercially viable energy conversion strategy for automotive applications.Peer reviewe

    HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

    Get PDF
    Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2\emph{L} displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst. The fuel used is 95 RON pump gasoline and injection strategies are evaluated in order to maintain low soot levels and high efficiency. Limitations and benefits on operating range are examined between 1000 and 3000 rpm. This paper investigates how to extend the HCCI range and how to reduce the high pressure rise rate with: increased boost from turbocharging, external EGR and different injection strategies. A higher boost pressure was found to extend the load range. It is shown that the limitation from high RI, NOx or soot is not the same in all engine speed and load points. By turbocharging the engine in HCCI mode there is greater flexibility to increase the range of practical operating points

    Closed-Loop Control of HCCI Engine Dynamics

    Get PDF
    The topic of the thesis is control of Homogeneous Charge Compression Ignition (HCCI) engine dynamics. HCCI offers a potential to combine high efficiency with very low emissions. In order to fulfill the potential benefits, closed-loop control is needed. The thesis discusses sensors, feedback signals and actuators for closed-loop control of the HCCI combustion. Closed-loop control of the HCCI combustion using ion current is demonstrated. Models of the HCCI dynamics suitable for purposes of control design are presented. It is shown that low-order models are sufficient to describe the HCCI dynamics. Models of HCCI combustion have been determined both by system identification and by physical modeling. Different methods for characterizing and controlling the HCCI combustion are outlined and demonstrated. In cases where the combustion phasing in a six-cylinder heavy-duty engine was controlled, either by a Variable Valve Actuation system using the inlet valve or a dual-fuel system, results are presented. Combustion phasing is a limiting factor of the load control and emission control performance. A system where control of HCCI on a cycle-to-cycle basis is outlined and cylinder individual cycle-to-cycle control on a six-cylinder heavy duty engine is presented. Various control strategies are compared. Model-based control, such as LQG and Model Predictive Control MPC, and PID control are shown to give satisfactory controller performance. An MPC controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure

    Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load

    Full text link
    Along the last years, engine researchers are more and more focusing their efforts on the advanced low temperature combustion (LTC) concepts with the aim of achieving the stringent limits of the current emission legislations. In this regard, several studies based on highly premixed combustion concepts such as HCCI has been confirmed as a promising way to decrease drastically the most relevant CI diesel engine-out emissions, NOx and soot. However, the major HCCI drawbacks are the narrow load range, bounded by either misfiring (low load, low speed) or hardware limitations (higher load, higher speeds) and the combustion control (cycle-to-cylce control and combustion phasing). Although several techniques have been widely investigated in order to overcome these drawbacks, the high chemical reactivity of the diesel fuel remains as the main limitation for the combustion control. The attempts of the researchers to overcome these disadvantages are shifting to the use of fuels with different reactivity. In this sense, gasoline PPC has been able to reduce emissions and improve efficiency simultaneously, but some drawbacks regarding controllability and stability at low load operating conditions still need solution. In this field, previous researches have been demonstrate the multiple injection strategy as an appropriate technique to enhance the combustion stability. However, PPC combustion has been found limited to engine loads higher than 5 bar BMEP when using fuels with octane number greater than 90. In this regard, previous work from the authors showed the capability of the spark plug to provide combustion control in engine loads below this limit even using 98 ON gasoline. The main objective of the present work is to couple the control capability of the spark assistance together with an appropriate mixture distribution by using double injection strategies with the aim of evaluating performance and engine-out emissions at low load PPC range using a high octane number gasoline. For this purpose the optical and metal version of a compression ignition single-cylinder engine, to allow high compression ratio, has been used during the research. A common rail injection system enabling high injection pressures has been utilized to supply the 98 octane number gasoline. An analysis of the in-cylinder pressure signal derived parameters, hydroxyl radical (OH*) and natural luminosity images acquired from the transparent engine as well as a detailed analysis of the air/fuel mixing process by means of a 1-D in-house developed spray model (DICOM) has been conducted. Results from both analysis methods, suggest the spark assistance as a proper technique to improve the spatial and temporal control over the low load gasoline PPC combustion process. A noticeable increase in the cycle to cycle repeatability (5% versus 15.1% CoV IMEP at 2 bar load) as well as a reduction in the knocking level (20.5 versus 33.6 MW/m2 at 7 bar load) is observed. In addition, the combination of the spark assistance with the use of the double injection strategy provides a great improvement in terms of combustion efficiency (93% versus 88% for a single injection strategy) with a benefit around 18% in the IMEPBenajes Calvo, JV.; Tormos MartĂ­nez, BV.; GarcĂ­a MartĂ­nez, A.; Monsalve Serrano, J. (2014). Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load. SAE International Journal of Engines. 7(4):1875-1887. doi:10.4271/2014-01-2669S187518877

    Fuel Reforming for High Efficiency and Dilution Limit Extension of Spark-ignited Engines

    Full text link
    Engine efficiency improvement can help combustion powertrains, which include conventional, hybrid, and plug-in hybrid systems, to meet the strict emissions standards and the increasing demand from customers for performance, drivability, and affordability of vehicles. Cooled exhaust gas recirculation (EGR) can reduce fuel consumption and NOx emissions of gasoline engine systems while keeping the capability of using a conventional three-way catalyst for effective emissions reduction. However, too much EGR would lead to combustion instability and misfire. This thesis identified opportunities to improve efficiency in internal combustion engines by high EGR dilution SI combustion by using thermodynamics-based approaches. This goal has been achieved by using fuel reforming in a thermodynamically-favorable way. Exhaust heat was used to drive endothermic reforming reactions to increase the chemical fuel energy to attain thermochemical recuperation (TCR), a form of waste heat recovery, with robust integrated systems and the regular gasoline. Three strategies for fuel reforming, along with the unique designs of corresponding integrated engine systems, a committed in-cylinder reformer, a catalytic EGR-loop reforming system, and fuel reforming by fuel injection during Negative Valve Overlap (NVO), have been proposed and investigated with unique engine system setups and corresponding experimental and simulation research. The concept and the system to use one cylinder to serve as a committed fuel reformer without spark ignition is first demonstrated. The committed in-cylinder reformer engine system achieves 8% brake thermal efficiency improvement through EGR and cylinder deactivation effects, even though there is low fuel conversion. The novel catalytic EGR-loop reforming integrated engine system was designed and tested. The experiments and thermodynamic equilibrium calculations reveal that the suppression of H2 and CO caused by the enthalpy limitation could be countered by adding small amounts of O2 by running one-cylinder lean. As much as 15 volume % H2 at the catalyst outlet is produced when the fuel and air equivalence ratio is between 4 and 7 under quasi-steady-state conditions. It is also found that this catalytic EGR reforming strategy makes it possible to sustain stable combustion with a volumetric equivalent of 45%–55% EGR, compared to a baseline EGR dilution limit which is under 25%. This catalytic EGR-loop reforming strategy results in a decrease of more than 8% in fuel consumption with significant potentials for even higher brake thermal efficiency. This novel design also opens up a new control method to control the amount of fuel reforming and the fraction of the partial oxidation reaction and steam reforming reaction by adjusting the lambda value of the cylinder which is running lean. Through this design, the engine is serving as an active system, which can also be adapted to respond to the needs of the passive catalyst system so that even better more significant benefit can be achieved. The results demonstrate fuel injection during NVO can extend the dilution limit, improve brake specific fuel consumption (BSFC), and reduce CO and NOx emissions on the engine modified with the capability of variable intake and exhaust valve timing and higher compression ratio. A comprehensive comparison of different reforming strategies for engine application and analysis of critical factors contributing to the performance of integrated fuel reforming engine systems is also provided. The research of this dissertation has demonstrated new pathways and scientific outcomes for technology development of internal combustion engine powertrain systems that can operate significantly more efficiently and cleanly.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144107/1/yanchang_1.pd

    EXPERIMENTAL SETUP AND CONTROLLER DESIGN FOR AN HCCI ENGINE

    Get PDF
    Homogeneous charged compression ignition (HCCI) is a promising combustion mode for internal combustion (IC) engines. HCCI engines have very low NOx and soot emission and low fuel consumption compared to traditional engines. The aim of this thesis is divided into two main parts: (1) engine instrumentation with a step towards converting a gasoline turbocharged direct injection (GTDI) engine to an HCCI engine; and (2) developing controller for adjusting the crank angle at 50% mass fuel burn (CA50), exhaust gas temperature Texh, and indicated mean effective pressure (IMEP) of a single cylinder Ricardo HCCI engine. The base GTDI engine is modified by adding an air heater, inter-cooler, and exhaust gas recirculation (EGR) in the intake and exhaust loops. dSPACE control units are programmed for adding monitoring sensors and implementing actuators in the engine. Control logics for actuating electronic throttle control (ETC) valve, EGR valve, and port fuel injector (PFI) are developed using the rapid control prototyping (RCP) feature of dSPACE. A control logic for crank/cam synchronization to determine engine crank angle with respect to firing top dead center (TDC) is implemented and validated using in-cylinder pressure sensor data. A control oriented model (COM) is developed for estimating engine parameters including CA50, Texh, and IMEP for a single cylinder Ricardo engine. The COM is validated using experimental data for steady state and transient engine operating conditions. A novel three-input three-output controller is developed and tested on a detailed physical HCCI engine plant model. Two type of controller design approaches are used for designing HCCI controllers: (1) empirical, and (2) model-based. A discrete sub-optimal sliding mode controller (DSSMC) is designed as a model-based controller to control CA50 and Texh, and a PI controller is designed to control IMEP. The results show that the designed controllers can successfully track the reference trajectories and can reject the external disturbances within the given operating region
    • …
    corecore