18,865 research outputs found

    Predicting Anchor Links between Heterogeneous Social Networks

    Full text link
    People usually get involved in multiple social networks to enjoy new services or to fulfill their needs. Many new social networks try to attract users of other existing networks to increase the number of their users. Once a user (called source user) of a social network (called source network) joins a new social network (called target network), a new inter-network link (called anchor link) is formed between the source and target networks. In this paper, we concentrated on predicting the formation of such anchor links between heterogeneous social networks. Unlike conventional link prediction problems in which the formation of a link between two existing users within a single network is predicted, in anchor link prediction, the target user is missing and will be added to the target network once the anchor link is created. To solve this problem, we use meta-paths as a powerful tool for utilizing heterogeneous information in both the source and target networks. To this end, we propose an effective general meta-path-based approach called Connector and Recursive Meta-Paths (CRMP). By using those two different categories of meta-paths, we model different aspects of social factors that may affect a source user to join the target network, resulting in the formation of a new anchor link. Extensive experiments on real-world heterogeneous social networks demonstrate the effectiveness of the proposed method against the recent methods.Comment: To be published in "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

    Organizational Chart Inference

    Full text link
    Nowadays, to facilitate the communication and cooperation among employees, a new family of online social networks has been adopted in many companies, which are called the "enterprise social networks" (ESNs). ESNs can provide employees with various professional services to help them deal with daily work issues. Meanwhile, employees in companies are usually organized into different hierarchies according to the relative ranks of their positions. The company internal management structure can be outlined with the organizational chart visually, which is normally confidential to the public out of the privacy and security concerns. In this paper, we want to study the IOC (Inference of Organizational Chart) problem to identify company internal organizational chart based on the heterogeneous online ESN launched in it. IOC is very challenging to address as, to guarantee smooth operations, the internal organizational charts of companies need to meet certain structural requirements (about its depth and width). To solve the IOC problem, a novel unsupervised method Create (ChArT REcovEr) is proposed in this paper, which consists of 3 steps: (1) social stratification of ESN users into different social classes, (2) supervision link inference from managers to subordinates, and (3) consecutive social classes matching to prune the redundant supervision links. Extensive experiments conducted on real-world online ESN dataset demonstrate that Create can perform very well in addressing the IOC problem.Comment: 10 pages, 9 figures, 1 table. The paper is accepted by KDD 201

    Helping People and Places Move Out of Poverty: Progress and Learning 2010

    Get PDF
    Presents a mid-course review of a ten-year program to help the poor build economic security in the Southeast. Examines impact, lessons learned, factors that facilitated or impeded progress, how resources were leveraged, changing contexts, and next steps

    Algorithms to Explore the Structure and Evolution of Biological Networks

    Get PDF
    High-throughput experimental protocols have revealed thousands of relationships amongst genes and proteins under various conditions. These putative associations are being aggressively mined to decipher the structural and functional architecture of the cell. One useful tool for exploring this data has been computational network analysis. In this thesis, we propose a collection of novel algorithms to explore the structure and evolution of large, noisy, and sparsely annotated biological networks. We first introduce two information-theoretic algorithms to extract interesting patterns and modules embedded in large graphs. The first, graph summarization, uses the minimum description length principle to find compressible parts of the graph. The second, VI-Cut, uses the variation of information to non-parametrically find groups of topologically cohesive and similarly annotated nodes in the network. We show that both algorithms find structure in biological data that is consistent with known biological processes, protein complexes, genetic diseases, and operational taxonomic units. We also propose several algorithms to systematically generate an ensemble of near-optimal network clusterings and show how these multiple views can be used together to identify clustering dynamics that any single solution approach would miss. To facilitate the study of ancient networks, we introduce a framework called ``network archaeology'') for reconstructing the node-by-node and edge-by-edge arrival history of a network. Starting with a present-day network, we apply a probabilistic growth model backwards in time to find high-likelihood previous states of the graph. This allows us to explore how interactions and modules may have evolved over time. In experiments with real-world social and biological networks, we find that our algorithms can recover significant features of ancestral networks that have long since disappeared. Our work is motivated by the need to understand large and complex biological systems that are being revealed to us by imperfect data. As data continues to pour in, we believe that computational network analysis will continue to be an essential tool towards this end
    • …
    corecore