1,470 research outputs found

    Innovative Approaches to 3D GIS Modeling for Volumetric and Geoprocessing Applications in Subsurface Infrastructures in a Virtual Immersive Environment

    Get PDF
    As subsurface features remain largely ‘out of sight, out of mind’, this has led to challenges when dealing with underground space and infrastructures and especially so for those working in GIS. Since subsurface infrastructure plays a major role in supporting the needs of modern society, groups such as city planners and utility companies and decision makers are looking for an ‘holistic’ approach where the sustainable use of underground space is as important as above ground space. For such planning and management, it is crucial to examine subsurface data in a form that is amenable to 3D mapping and that can be used for increasingly sophisticated 3D modeling. The subsurface referred to in this study focuses particularly on examples of both shallow and deep underground infrastructures. In the case of shallow underground infrastructures mostly two-dimensional maps are used in the management and planning of these features. Depth is a very critical component of underground infrastructures that is difficult to represent in a 2D map and for this reason these are best studied in three-dimensional space. In this research, the capability of 3D GIS technology and immersive geography are explored for the storage, management, analysis, and visualization of shallow and deep subsurface features

    Interactive Constrained {B}oolean Matrix Factorization

    No full text

    3-Step flow focusing enables multidirectional imaging of bioparticles for imaging flow cytometry

    Get PDF
    Multidirectional imaging flow cytometry (mIFC) extends conventional imaging flow cytometry (IFC) for the image-based measurement of 3D-geometrical features of particles. The innovative core is a flow rotation unit in which a vertical sample lamella is incrementally rotated by 90 degrees into a horizontal lamella. The required multidirectional views are generated by guiding all particles at a controllable shear flow position of the parabolic velocity profile of the capillary slit detection chamber. All particles pass the detection chamber in a two-dimensional sheet under controlled rotation while each particle is imaged multiple times. This generates new options for automated particle analysis. In an experimental application, we used our system for the accurate classification of 15 species of pollen based on 3D-morphological information. We demonstrate how the combination of multi directional imaging with advanced machine learning algorithms can improve the accuracy of automated bio-particle classification. As an additional benefit, we significantly decrease the number of false positives in the classification of foreign particles,i.e.those elements which do not belong to one of the trained classes by the 3D-extension of the classification algorithm. © The Royal Society of Chemistry 2020

    Authoring virtual crowds: a survey

    Get PDF
    Recent advancements in crowd simulation unravel a wide range of functionalities for virtual agents, delivering highly-realistic,natural virtual crowds. Such systems are of particular importance to a variety of applications in fields such as: entertainment(e.g., movies, computer games); architectural and urban planning; and simulations for sports and training. However, providingtheir capabilities to untrained users necessitates the development of authoring frameworks. Authoring virtual crowds is acomplex and multi-level task, varying from assuming control and assisting users to realise their creative intents, to deliveringintuitive and easy to use interfaces, facilitating such control. In this paper, we present a categorisation of the authorable crowdsimulation components, ranging from high-level behaviours and path-planning to local movements, as well as animation andvisualisation. We provide a review of the most relevant methods in each area, emphasising the amount and nature of influencethat the users have over the final result. Moreover, we discuss the currently available authoring tools (e.g., graphical userinterfaces, drag-and-drop), identifying the trends of early and recent work. Finally, we suggest promising directions for futureresearch that mainly stem from the rise of learning-based methods, and the need for a unified authoring framework.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement No 860768 (CLIPE project). This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital PolicyPeer ReviewedPostprint (author's final draft

    Nanoinformatics: a new area of research in nanomedicine

    Get PDF
    Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and ?omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings
    • 

    corecore