162,476 research outputs found

    Application of High-precision Timing Systems to Distributed Survey Systems

    Get PDF
    In any hydrographic survey system that consists of more than one computer, one of the most difficult integration problems is to ensure that all components maintain a coherent sense of time. Since virtually all modern survey systems are of this type, timekeeping and synchronized timestamping of data as it is created is of significant concern. This paper describes a method for resolving this problem based on the IEEE 1588 Precise Time Protocol (PTP) implemented by hardware devices, layered with some custom software called the Software Grandmaster (SWGM) algorithm. This combination of hardware and software maintains a coherent sense of time between multiple ethernet-connected computers, on the order of 100 ns (rms) in the best case, of the timebase established by the local GPS-receiver clock. We illustrate the performance of this techniques in a practical survey system using a Reson 7P sonar processor connected to a Reson 7125 Multibeam Echosounder (MBES), integrated with an Applanix POS/MV 320 V4 and a conventional data capture computer. Using the timing capabilities of the PTP hardware implementations, we show that the timepieces achieve mean (hardware based) synchronization and timestamping within 100-150 ns (rms), and that the data created at the Reson 7P without hardware timestamps has a latency variability of 28 µs (rms) due to software constraints within the capture system. This compares to 288 ms (rms) using Reson’s standard hybrid hardware/software solution, and 13.6 ms (rms) using a conventional single-oscillator timestamping model

    Validate implementation correctness using simulation: the TASTE approach

    Get PDF
    High-integrity systems operate in hostile environment and must guarantee a continuous operational state, even if unexpected events happen. In addition, these systems have stringent requirements that must be validated and correctly translated from high-level specifications down to code. All these constraints make the overall development process more time-consuming. This becomes especially complex because the number of system functions keeps increasing over the years. As a result, engineers must validate system implementation and check that its execution conforms to the specifications. To do so, a traditional approach consists in a manual instrumentation of the implementation code to trace system activity while operating. However, this might be error-prone because modifications are not automatic and still made manually. Furthermore, such modifications may have an impact on the actual behavior of the system. In this paper, we present an approach to validate a system implementation by comparing execution against simulation. In that purpose, we adapt TASTE, a set of tools that eases system development by automating each step as much as possible. In particular, TASTE automates system implementation from functional (system functions description with their properties – period, deadline, priority, etc.) and deployment(processors, buses, devices to be used) models. We tailored this tool-chain to create traces during system execution. Generated output shows activation time of each task, usage of communication ports (size of the queues, instant of events pushed/pulled, etc.) and other relevant execution metrics to be monitored. As a consequence, system engineers can check implementation correctness by comparing simulation and execution metrics

    Building real-time embedded applications on QduinoMC: a web-connected 3D printer case study

    Full text link
    Single Board Computers (SBCs) are now emerging with multiple cores, ADCs, GPIOs, PWM channels, integrated graphics, and several serial bus interfaces. The low power consumption, small form factor and I/O interface capabilities of SBCs with sensors and actuators makes them ideal in embedded and real-time applications. However, most SBCs run non-realtime operating systems based on Linux and Windows, and do not provide a user-friendly API for application development. This paper presents QduinoMC, a multicore extension to the popular Arduino programming environment, which runs on the Quest real-time operating system. QduinoMC is an extension of our earlier single-core, real-time, multithreaded Qduino API. We show the utility of QduinoMC by applying it to a specific application: a web-connected 3D printer. This differs from existing 3D printers, which run relatively simple firmware and lack operating system support to spool multiple jobs, or interoperate with other devices (e.g., in a print farm). We show how QduinoMC empowers devices with the capabilities to run new services without impacting their timing guarantees. While it is possible to modify existing operating systems to provide suitable timing guarantees, the effort to do so is cumbersome and does not provide the ease of programming afforded by QduinoMC.http://www.cs.bu.edu/fac/richwest/papers/rtas_2017.pdfAccepted manuscrip

    Fully automatic worst-case execution time analysis for MATLAB/Simulink models

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In today's technical world (e.g., in the automotive industry), more and more purely mechanical components get replaced by electro-mechanical ones. Thus the size and complexity of embedded systems steadily increases. To cope with this development, comfortable software engineering tools are being developed that allow a more functionality-oriented development of applications. The paper demonstrates how worst-case execution time (WCET) analysis is integrated into such a high-level application design and simulation tool MATLAB/Simulink-thus providing a higher-level interface to WCET analysis. The MATLAB/Simulink extensions compute and display worst-case timing data for all blocks of a MATLAB/Simulink simulation, which gives the developer of an application valuable feedback about the correct timing of the application being developed. The solution facilitates a fully-automated WCET analysis, i.e., in contrast to existing approaches the programmer does not have to provide path information

    Safety-related challenges and opportunities for GPUs in the automotive domain

    Get PDF
    GPUs have been shown to cover the computing performance needs of autonomous driving (AD) systems. However, since the GPUs used for AD build on designs for the mainstream market, they may lack fundamental properties for correct operation under automotive's safety regulations. In this paper, we analyze some of the main challenges in hardware and software design to embrace GPUs as the reference computing solution for AD, with the emphasis in ISO 26262 functional safety requirements.Authors would like to thank Guillem Bernat from Rapita Systems for his technical feedback on this work. The research leading to this work has received funding from the European Re-search Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft
    • …
    corecore