916 research outputs found

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development

    Get PDF
    Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector

    New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion

    Get PDF
    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit. In generator driving mode, the battery bank is employed to elevate the phase voltage for fast excitation and demagnetization. In battery driving mode, the converter is reconfigured as a four-level converter, and the capacitor is used as an additional charge capacitor to produce multilevel voltage outputs, which enhances the torque capability. The operating modes of the proposed drive are explained and the phase current and voltage are analyzed in details. The battery charging is naturally achieved by the demagnetization current in motoring mode and by the regenerative current in braking mode. Moreover, the battery can be charged by the external AC source or generator through the proposed converter when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating the power flow between the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm the effectiveness of the proposed converter topology

    STUDY OF STRATEGIES FOR AN OPTIMAL ENERGY MANAGEMENT ON ELECTRIC AND HYBRID VEHICLES

    Get PDF
    Questa tesi di dottorato è focalizzata sull’identificazione di strategie di gestione dell’energia a bordo di veicoli elettrici e ibridi, con l’obiettivo di ottimizzare la gestione dell’energia e, quindi, consentire un risparmio di risorse. Infatti, l’ottimizzazione della fase d’uso del veicolo, attraverso una più efficiente gestione dell’energia, consente di dimensionare in modo ridotto i principali componenti, come il pacco batterie. Innanzitutto, viene presentato un tool di simulazione denominato TEST (Target-speed EV Simulation Tool). Questo strumento consente di effettuare simulazioni di dinamica longitudinale per veicoli completamente elettrici o ibridi e, quindi, di monitorare tutti i dati rilevanti necessari per effettuare un corretto dimensionamento del gruppo propulsore, inclusi il/i motore/i elettrico/i ed il pacco batterie. Inoltre, è possibile testare anche diversi layout di propulsori, compresi quelli che utilizzano celle a combustibile, le cosiddette “fuel cell”. Viene poi presentata una strategia di frenata rigenerativa, adatta per veicoli FWD, RWD e AWD. L’obiettivo principale è quello di recuperare la massima energia frenante possibile, mantenendo il veicolo stabile, con buone prestazioni in frenata. La strategia è stata testata sia attraverso un consolidato software di simulazione della dinamica del veicolo (VI-CarRealTime), sia attraverso simulazioni “driver-in-the-loop” utilizzando un simulatore di guida. Inoltre, la strategia proposta è stata integrata nel tool TEST per valutarne l’influenza sull’autonomia e sui consumi del veicolo. Gli strumenti sopra menzionati sono stati utilizzati per studiare uno scenario di casi reali, per valutare la fattibilità dell’utilizzo di una flotta alimentata a fuel cell a metano per svolgere attività di raccolta rifiuti porta a porta. I risultati mostrano un’elevata fattibilità in termini di autonomia del veicolo rispetto alle missioni standard di raccolta dei rifiuti, a condizione che i componenti siano adeguatamente dimensionati. Il dimensionamento dei componenti è stato effettuato attraverso iterazioni, utilizzando diversi componenti nelle stesse missioni. Infine, è stata riportata un’analisi approfondita degli studi LCA (Life Cycle Assessment) relativi ai veicoli elettrici, con particolare attenzione al pacco batterie, evidenziando alcune criticità ambientali. Questo studio sull’LCA sottolinea quindi l’importanza di una corretta gestione dell’energia per ridurre al minimo l’impatto ambientale associato al consumo stesso di energia.This PhD thesis is focused on identifying energy management strategies on board electric and hybrid vehicles, to optimize energy management and thus allow for resource savings. In fact, vehicle’s operational phase optimisation through a more efficient energy management allows main components downsizing, such as battery pack. First of all, a simulation tool called TEST (Target-speed EV Simulation Tool), is presented. This tool allows to carry out longitudinal dynamics simulations on pure electric or hybrid-electric vehicles, and therefore monitoring all the relevant data needed to carry out a proper powertrain sizing, including the electric motor(s) and the battery pack. Furthermore, several powertrain layouts can be also tested, including those using fuel cells. Then a regenerative braking strategy, suitable for FWD, RWD and AWD vehicles, is presented. Its main target is to recover the maximum possible braking energy, while keeping the vehicle stable with good braking performance. The strategy has been tested both through a state-of-art vehicle dynamics simulation software (VI-CarRealTime) and through driver-in-the-loop simulations using a driving simulator. Furthermore, the proposed strategy has been integrated into TEST to evaluate its influence on vehicle range and consumptions. The above-mentioned tools have been used to evaluate a real-world case scenario to assess the feasibility of using a methane fuel cell powered fleet to carry out door to door waste collection activities. Results show high feasibility in terms of vehicle range compared to standard waste collection missions, provided that components are properly sized. Components sizing has been done through iterations using different components on the same missions. Finally, an in-depth analysis of the LCA (Life Cycle Assessment) studies related to electric vehicles has been reported, with particular focus to the battery pack, highlighting some environmental critical issues. This LCA study therefore emphasizes the importance of a correct energy management to minimize the environmental impact associated with energy consumption

    Paving the way to electrified road transport - Publicly funded research, development and demonstration projects on electric and plug-in vehicles in Europe

    Get PDF
    The electrification of road transport or electro-mobility is seen by many as a potential game-changing technology that could have a significant influence on the future cost and environmental performance of personal individual mobility as well as short distance goods transport. While there is currently a great momentum vis-Ă -vis electro-mobility, it is yet unclear, if its deployment is economically viable in the medium to long term. Electromobility, in its early phase of deployment, still faces significant hurdles that need to be overcome in order to reach a greater market presence. Further progress is needed to overcome some of these hurdles. The importance of regulatory and financial support to emerging environmentally friendly transport technologies has been stressed in multiple occasions. The aim of our study was to collect the information on all on-going or recently concluded research, development and demonstration projects on electric and plug-in hybrid electric vehicles, which received EU or national public funding with a budget >1mln Euro, in order to assess which of the electric drive vehicles (EDV) challenges are addressed by these projects and to identify potential gaps in the research, development, and demonstration (R, D & D) landscape in Europe. The data on R, D & D projects on electric and plug-in vehicles, which receive public funding, has been collected by means of (i) on-line research, (ii) validation of an inventory of projects at member state level through national contacts and (iii) validation of specific project information through distribution of project information templates among project coordinators. The type of information which was gathered for the database included: EDV component(s) targeted for R&D, location and scope of demo projects, short project descriptions, project budget and amount of public co-funding received, funding organisation, project coordinator,number and type of partners (i.e. utilities, OEMs, services, research institutions, local authorities), start and duration of the project. The validation process permitted the identification of additional projects which were not accounted for in the original online search. Statistical elaboration of the collected data was conducted. More than 320 R, D & D projects funded by the EU and Member states are listed and analyzed. Their total budgets add up to approximately 1.9 billion Euros. Collected data allowed also the development of an interactive emobility visualization tool, called EV-Radar, which portrays in an interactive way R&D and demonstration efforts for EDVs in Europe. It can be accessed under http://iet.jrc.ec.europa.eu/ev-radar.JRC.F.6-Energy systems evaluatio
    • …
    corecore