2,668 research outputs found

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    Get PDF
    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts

    Composable Models for Timing and Liveness Analysis in Distributed Real-Time Embedded Systems Middleware

    Get PDF
    Middleware for distributed real-time embedded (DRE) systems has grown increasingly complex, to address functional and temporal requirements of diverse applications. While current approaches to modeling middleware have eased the task of assembling, deploying and configuring middleware and the applications that use it, a lower-level set of formal models is needed to uncover subtle timing and liveness hazards introduced by interference between and within distributed computations, particularly in the face of alternative middleware concurrency strategies. In this paper, we propose timed automata as a formal model of low-level middleware building blocks from which a variety different middleware configurations can be constructed. When combined with analysis techniques such as model checking, this formal model can help developers in verifying the correctness of various middleware configurations with respect to the timing and liveness constraints of each particular application

    Ein verallgemeinerter Prozess zur Verifikation und Validerung von Modellen und Simulationsergebnissen

    Get PDF
    With technologies increasing rapidly, symbolic, quantitative modeling and computer-based simulation (M&S) have become affordable and easy-to-apply tools in numerous application areas as, e.g., supply chain management, pilot training, car safety improvement, design of industrial buildings, or theater-level war gaming. M&S help to reduce the resources required for many types of projects, accelerate the development of technical systems, and enable the control and management of systems of high complexity. However, as the impact of M&S on the real world grows, the danger of adverse effects of erroneous or unsuitable models or simu-lation results also increases. These effects may range from the delayed delivery of an item ordered by mail to hundreds of avoidable casualties caused by the simulation-based acquisi-tion (SBA) of a malfunctioning communication system for rescue teams. In order to benefit from advancing M&S, countermeasures against M&S disadvantages and drawbacks must be taken. Verification and Validation (V&V) of models and simulation results are intended to ensure that only correct and suitable models and simulation results are used. However, during the development of any technical system including models for simulation, numerous errors may occur. The later they are detected, and the further they have propagated through the model development process, the more resources they require to correct thus, their propaga-tion should be avoided. If the errors remain undetected, and major decisions are based on in-correct or unsuitable models or simulation results, no benefit is gained from M&S, but a dis-advantage. This thesis proposes a structured and rigorous approach to support the verification and valida-tion of models and simulation results by a) the identification of the most significant of the current deficiencies of model develop-ment (design and implementation) and use, including the need for more meaningful model documentation and the lack of quality assurance (QA) as an integral part of the model development process; b) giving an overview of current quality assurance measures in M&S and in related areas. The transferability of concepts like the capability maturity model for software (SW-CMM) and the ISO9000 standard is discussed, and potentials and limits of documents such as the VV&A Recommended Practices Guide of the US Defense Modeling and Simulation Office are identified; c) analysis of quality assurance measures and so called V&V techniques for similarities and differences, to amplify their strengths and to reduce their weaknesses. d) identification and discussion of influences that drive the required rigor and intensity of V&V measures (risk involved in using models and simulation results) on the one hand, and that limit the maximum reliability of V&V activities (knowledge about both the real system and the model) on the other. This finally leads to the specification of a generalized V&V process - the V&V Triangle. It illustrates the dependencies between numerous V&V objectives, which are derived from spe-cific potential errors that occur during model development, and provides guidance for achiev-ing these objectives by the association of V&V techniques, required input, and evidence made available. The V&V Triangle is applied to an M&S sample project, and the lessons learned from evaluating the results lead to the formulation of future research objectives in M&S V&V

    An Enhanced Hardware Description Language Implementation for Improved Design-Space Exploration in High-Energy Physics Hardware Design

    Get PDF
    Detectors in High-Energy Physics (HEP) have increased tremendously in accuracy, speed and integration. Consequently HEP experiments are confronted with an immense amount of data to be read out, processed and stored. Originally low-level processing has been accomplished in hardware, while more elaborate algorithms have been executed on large computing farms. Field-Programmable Gate Arrays (FPGAs) meet HEP's need for ever higher real-time processing performance by providing programmable yet fast digital logic resources. With the fast move from HEP Digital Signal Processing (DSPing) applications into the domain of FPGAs, related design tools are crucial to realise the potential performance gains. This work reviews Hardware Description Languages (HDLs) in respect to the special needs present in the HEP digital hardware design process. It is especially concerned with the question, how features outside the scope of mainstream digital hardware design can be implemented efficiently into HDLs. It will argue that functional languages are especially suitable for implementation of domain-specific languages, including HDLs. Casestudies examining the implementation complexity of HEP-specific language extensions to the functional HDCaml HDL will prove the viability of the suggested approach
    corecore