44,520 research outputs found

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This work presents a compositional approach for schedulability analysis of Distributed Integrated Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata in UPPAAL to verify its schedulability by model checking. However, direct model checking is infeasible due to the large state space. Therefore, we introduce the compositional analysis that checks each partition including its communication environment individually. Based on a notion of message interfaces, a number of message sender automata are built to model the environment for a partition. We define a timed selection simulation relation, which supports the construction of composite message interfaces. By using assume-guarantee reasoning, we ensure that each task meets the deadline and that communication constraints are also fulfilled globally. The approach is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MeTRiD 2018, arXiv:1806.09330. arXiv admin note: text overlap with arXiv:1803.1105

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    A distributed knowledge-based approach to flexible automation : the contract-net framework

    Get PDF
    Includes bibliographical references (p. 26-29)

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Running real time distributed simulations under Linux and CERTI

    Get PDF
    This paper presents some experiments and some results to enforce real time distributed simulations in accordance with the High Level Architecture (HLA). Simulations were run by using CERTI, an open source middleware, as the Run Time Infrastructure (RTI). Models were distributed over computers under various available versions of the 2.6 Linux kernel. Studies and experiments relied on a real case study. The chosen case study was the simulation of an "in formation" flight of observation satellites. This case study brings up some real applicative needs in real time distributed simulations and real configurations of simulators and models. Two simulations of "in formation" flight of satellites were studied. The study consisted in modeling the behaviour of the simulators and in running these models by using various kernel or middleware operating mechanisms and services. Time measurements were performed at each test giving some results on the ability of the simulation to meet its real time requirements
    • …
    corecore