21 research outputs found

    Adaptive Capacity Management in Bluetooth Networks

    Get PDF

    AN EFFICIENT COMBINED CONGESTION HANDLING=--A--cN-:cD~-­ ROUTE MAINTENANCE PROTOCOL FOR DYNAMIC ENVIRONMENT IN BLUETOOTH NETWORK

    Get PDF
    Bluetooth IS a widespread technology for small wireless networks that permits Bluetooth devices to construct a multi-hop network called a scatternet. A large number of connections passing through a single master/ bridge device may create the problem of congestion in a Bluetooth scatternet. In addition, routing in a multi-hop dynamic Bluetooth network, where a number of masters and bridges exist, sometimes creates technical hitches in a scatternet. It has been observed that frequent link disconnections and a new route construction consume more system resources that ultimately degrade the performance of the whole network. As, Bluetooth specification has defined piconet configuration, scatternet configuration has still not been standardized. The main objective of this thesis is to provide an efficient combined protocol for scatternet congestion handling and route maintenance. The methodology contains three parts

    Device Discovery in Frequency Hopping Wireless Ad Hoc Networks

    Get PDF
    This research develops a method for efficient discovery of wireless devices for a frequency hopping spread spectrum, synchronous, ad hoc network comprised of clustered sub-networks. The Bluetooth wireless protocol serves as the reference protocol. The development of a discovery, or outreach, method for scatternets requires the characterization of performance metrics of Bluetooth piconets, many of which are unavailable in literature. Precise analytical models characterizing the interference caused to Bluetooth network traffic by inquiring devices, the probability mass function of packet error rates between arbitrary pairs of Bluetooth networks, and Bluetooth discovery time distribution are developed. Based on the characterized performance metrics, three scatternet outreach methods are developed and compared. Outreach methods which actively inquire on a regular basis, as proposed in literature, are shown to produce lower goodput, have greater mean packet delay, require more power, and cause significant delays in discovery. By passively remaining available for outreach, each of these disadvantages is avoided

    Measurement and management of the impact of mobility on low-latency anonymity networks

    Get PDF
    Privacy, including the right to privacy of correspondence, is a human right. Privacy-enhancing technologies, such as the Tor anonymity network, help maintain this right. The increasing use of Tor from mobile devices raises new challenges for the continued effectiveness of this low-latency anonymity network. Mobile Tor users may access the Internet from a range of wireless networks and service providers. Whenever a wireless network hands-off a mobile device’s connection from one access point to another, its external Internet Protocol (IP) address changes, and the connection to the Tor network is dropped. Every dropped connection requires the Tor circuit to be rebuilt. The time required to rebuild the circuit negatively impacts client performance. This research is the first to highlight this negative impact and to investigate the likely extent of the impact for typical usage scenarios and mobility models. The increased network churn caused by circuit rebuilding also negatively impacts anonymity. A novel metric (q-factor) is proposed here to measure the trade-off between anonymity and performance over the duration of a communication session. Two new solutions to the problems of managing mobility in a low-latency anonymity network are proposed in this thesis. The first solution relies on adaptive client throttling, based on a Kaplan-Meier estimator of the likelihood of a mobile network hand-off. The second solution relies on the use of a static bridge relay (mBridge) that acts as a persistent ‘home’ for a mobile Tor connection, so avoiding the need to recreate the Tor circuit whenever the mobile device is handed-off. The effectiveness of these solutions has been measured using the new q-factor metric. Both solutions provide better performance for mobile Tor clients than the standard Tor client implementation, although some performance reduction by comparison with static Tor clients remains. The bridge relay solution (mBridge) has been shown to offer better performance than client throttling, but is more vulnerable to certain types of attack. A strength of both solutions is that changes are restricted to client devices, the existing algorithms and protocols of the interior Tor network are unaffected
    corecore