1,056 research outputs found

    Photonic low-cost sensors for in-line fluid monitoring. Design methodology

    Get PDF
    779 p.The paradigm of process monitoring has evolved in the last years, driven by a clear need for improving efficiency, quality and safety of processes and products. Sectors as manufacturing, energy, food and beverages, etc. are fostering the adoption of innovative methods for controlling their processes and products, in a non-destructive, in-place, reliable, fast, accurate and cost-efficient manner. Furthermore, the parameters requested by the industry for the quality assessment are evolving from basic magnitudes as pressures, temperatures, humidity, etc. to complete chemical and physical fingerprints of these products and processes. In this situation, techniques based on the UV/VIS/NIR light-matter interaction appear to be optimum candidates to face the request of the industry. Moreover, at this moment, when we are witnessing a technological revolution in the field of optoelectronic components, which are required for setting up these light-based analyzers.However, being able to integrate these optoelectronic components with the rest of subsystems (electronics, optics, mechanics, hydraulics, data processing, etc.) is not straightforward. The development of these multi-domain and heterogeneous sensor products meeting not just technological but also market objectives poses a considerable technical and organizational challenge for any company.In this context, a methodological hybrid and agile integration of photonic components within the rest of subsystems towards a sensor product development is presented as the main outcome of the thesis. The methodology has been validated in several industrial scenarios, being three of them included in this thesis, which covers from hydraulic fluid quality control to real-time monitoring of alcoholic beverage fermentation process

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Lens-free interferometric microscope for transparent materials

    Get PDF
    As health systems fight against epidemics and infectious diseases, new forms of diagnostics need to be developed in order to meet the growing demand for services, often in locations without the necessary infrastructure. An emerging solution to this problem is point of care (POC) devices since they can provide rapid diagnostics without the need for specialized personnel or complex infrastructures. In this thesis, we show the development of a POC platform for the rapid early detection of infection, in particular Sepsis, a whole-body inflammatory reaction with high mortality rates. The main components of this platform are: a lens-free interferometric microscope (LIM) and a microfluidic cartridge with a functionalized plasmonic chip for the label-free detection of biomarkers. The LIM is also able to measure the phase modulation in commercial plasmonic chips. More specifically the thesis describes: • The development of a LIM with a large field of view and depth of field showing a sensitivity of 1nm along the beam propagation axis, which allows, for instance, the measurements of ultra-thin (2nm thickness) transparent silica and protein monolayer microarrays. • The generation of periodic structured light beams, obtained using a simple configuration including the birefringent elements of the LIM. These can be applied not only to imaging and biomarker detection but also in additive manufacturing and micro-structuring of surfaces. • The phase measurement of commercial surface plasmon resonance chips for the detection of changes in the refractive index of liquids. The phase measurements provide a sensitivity for bulk refractive index changes that is about one order of magnitude larger than for intensity-based detection under similar conditions. These results show a potential enhancement of the sensitivity of standard systems used in the biomedical community. • The development of a POC device comprising the LIM as a reader of specifically designed plasmonic gold nanohole array chips. The reading of the phase signal in the LIM shows a sensitivity increased by one order of magnitude thanks to the enhanced localized surface plasmon resonance interaction. Low concentrations of proteins and bacteria (as low as a single unit) are detected in measurements that also include human samples. This platform has the potential to multiplex the signal for simultaneous detection of thousands or even millions of different biomarkers. The LIM presented in this thesis is a very sensitive and robust imaging system with a high performance level for the detection of small quantities of transparent materials, with applications in microscopy and biomedicine.A medida que los sistemas de salud combaten epidemias y enfermedades infecciosas, nuevas formas de diagnóstico deben desarrollarse para satisfacer la creciente demanda de servicios, a menudo en lugares sin la infraestructura necesaria. Una solución emergente a este problema son los dispositivos de punto de atención (POC por sus siglas en inglés) ya que pueden proporcionar un diagnóstico rápido sin la necesidad de personal especializado o infraestructura compleja. En esta tesis mostramos el desarrollo de una plataforma POC para la detección rápida y temprana de infecciones, en particular Sepsis, una reacción inflamatoria de todo el cuerpo con altas tasas de mortalidad. Los principales componentes de esta plataforma son: un microscopio interferométrico sin lentes (LIM por sus siglas en inglés) y un cartucho de microfluídica con un chip plasmónico funcionalizado para la detección de biomarcadores, libre de marcadores adicionales. El LIM es también capaz de medir la modulación de fase en chips plasmónicos comerciales. Más específicamente, la tesis describe: * El desarrollo del LIM con un gran campo de visión y profundidad de campo mostrando una sensibilidad de 1nm a lo largo del eje de propagación del haz, que permite, por ejemplo, las mediciones de microarreglos ultrafinos (grosor de 2nm) y transparentes de Sílica y de monocapas de proteína.* La generación de haces de luz estructurados periódicos, obtenidos usando una configuración simple que incluye los elementos birrefringentes del LIM. Estos pueden ser aplicados no sólo a la detección de imágenes y biomarcadores, sino también a la fabricación aditiva y microestructuración de superficies. * La medición de fase en chips comerciales por resonancia de plasmón superficial para la detección de cambios en el índice de refracción de líquidos. Las mediciones de fase proporcionan una sensibilidad para cambios de índice de refracción en bulto que es aproximadamente un orden de magnitud mayor que para la detección basada en la intensidad con condiciones similares. Estos resultados muestran una potencial mejora de la sensibilidad de los sistemas estándar utilizados en la comunidad biomédica. * El desarrollo de un dispositivo POC que comprende el LIM como lector de chips plasmónicos de oro con arreglos de nano-agujeros específicamente diseñados. La lectura de la señal de fase en el LIM muestra un aumento de un orden de magnitud en la sensibilidad gracias a la interacción mejorada por la resonancia de plasmón superficial localizado. Bajas concentraciones de proteínas y bacterias (tan bajas como una sola bacteria) se detectan en mediciones que también incluyen muestras humanas. Esta plataforma tiene el potencial de multiplexar la señal para la detección simultánea de miles o incluso millones de biomarcadores diferentes. El LIM presentado en esta tesis es un sistema de imagen muy sensible y robusto con un alto nivel de rendimiento para la detección de pequeñas cantidades de materiales transparentes, con aplicaciones en microscopía y biomedicina

    Lens-free interferometric microscope for transparent materials

    Get PDF
    As health systems fight against epidemics and infectious diseases, new forms of diagnostics need to be developed in order to meet the growing demand for services, often in locations without the necessary infrastructure. An emerging solution to this problem is point of care (POC) devices since they can provide rapid diagnostics without the need for specialized personnel or complex infrastructures. In this thesis, we show the development of a POC platform for the rapid early detection of infection, in particular Sepsis, a whole-body inflammatory reaction with high mortality rates. The main components of this platform are: a lens-free interferometric microscope (LIM) and a microfluidic cartridge with a functionalized plasmonic chip for the label-free detection of biomarkers. The LIM is also able to measure the phase modulation in commercial plasmonic chips. More specifically the thesis describes: • The development of a LIM with a large field of view and depth of field showing a sensitivity of 1nm along the beam propagation axis, which allows, for instance, the measurements of ultra-thin (2nm thickness) transparent silica and protein monolayer microarrays. • The generation of periodic structured light beams, obtained using a simple configuration including the birefringent elements of the LIM. These can be applied not only to imaging and biomarker detection but also in additive manufacturing and micro-structuring of surfaces. • The phase measurement of commercial surface plasmon resonance chips for the detection of changes in the refractive index of liquids. The phase measurements provide a sensitivity for bulk refractive index changes that is about one order of magnitude larger than for intensity-based detection under similar conditions. These results show a potential enhancement of the sensitivity of standard systems used in the biomedical community. • The development of a POC device comprising the LIM as a reader of specifically designed plasmonic gold nanohole array chips. The reading of the phase signal in the LIM shows a sensitivity increased by one order of magnitude thanks to the enhanced localized surface plasmon resonance interaction. Low concentrations of proteins and bacteria (as low as a single unit) are detected in measurements that also include human samples. This platform has the potential to multiplex the signal for simultaneous detection of thousands or even millions of different biomarkers. The LIM presented in this thesis is a very sensitive and robust imaging system with a high performance level for the detection of small quantities of transparent materials, with applications in microscopy and biomedicine.A medida que los sistemas de salud combaten epidemias y enfermedades infecciosas, nuevas formas de diagnóstico deben desarrollarse para satisfacer la creciente demanda de servicios, a menudo en lugares sin la infraestructura necesaria. Una solución emergente a este problema son los dispositivos de punto de atención (POC por sus siglas en inglés) ya que pueden proporcionar un diagnóstico rápido sin la necesidad de personal especializado o infraestructura compleja. En esta tesis mostramos el desarrollo de una plataforma POC para la detección rápida y temprana de infecciones, en particular Sepsis, una reacción inflamatoria de todo el cuerpo con altas tasas de mortalidad. Los principales componentes de esta plataforma son: un microscopio interferométrico sin lentes (LIM por sus siglas en inglés) y un cartucho de microfluídica con un chip plasmónico funcionalizado para la detección de biomarcadores, libre de marcadores adicionales. El LIM es también capaz de medir la modulación de fase en chips plasmónicos comerciales. Más específicamente, la tesis describe: * El desarrollo del LIM con un gran campo de visión y profundidad de campo mostrando una sensibilidad de 1nm a lo largo del eje de propagación del haz, que permite, por ejemplo, las mediciones de microarreglos ultrafinos (grosor de 2nm) y transparentes de Sílica y de monocapas de proteína.* La generación de haces de luz estructurados periódicos, obtenidos usando una configuración simple que incluye los elementos birrefringentes del LIM. Estos pueden ser aplicados no sólo a la detección de imágenes y biomarcadores, sino también a la fabricación aditiva y microestructuración de superficies. * La medición de fase en chips comerciales por resonancia de plasmón superficial para la detección de cambios en el índice de refracción de líquidos. Las mediciones de fase proporcionan una sensibilidad para cambios de índice de refracción en bulto que es aproximadamente un orden de magnitud mayor que para la detección basada en la intensidad con condiciones similares. Estos resultados muestran una potencial mejora de la sensibilidad de los sistemas estándar utilizados en la comunidad biomédica. * El desarrollo de un dispositivo POC que comprende el LIM como lector de chips plasmónicos de oro con arreglos de nano-agujeros específicamente diseñados. La lectura de la señal de fase en el LIM muestra un aumento de un orden de magnitud en la sensibilidad gracias a la interacción mejorada por la resonancia de plasmón superficial localizado. Bajas concentraciones de proteínas y bacterias (tan bajas como una sola bacteria) se detectan en mediciones que también incluyen muestras humanas. Esta plataforma tiene el potencial de multiplexar la señal para la detección simultánea de miles o incluso millones de biomarcadores diferentes. El LIM presentado en esta tesis es un sistema de imagen muy sensible y robusto con un alto nivel de rendimiento para la detección de pequeñas cantidades de materiales transparentes, con aplicaciones en microscopía y biomedicina.Postprint (published version

    Novel Materials and Devices for Terahertz Detection and Emission for Sensing, Imaging and Communication

    Get PDF
    Technical advancement is required to attain a high data transmission rate, which entails expanding beyond the currently available bandwidth and establishing a new standard for the highest data rates, which mandates a higher frequency range and larger bandwidth. The THz spectrum (0.1-10 THz) has been considered as an emerging next frontier for the future 5G and beyond technology. THz frequencies also offer unique characteristics, such as penetrating most dielectric materials like fabric, plastic, and leather, making them appealing for imaging and sensing applications. Therefore, employing a high-power room temperature, tunable THz emitters, and a high responsivity THz detector is essential. Dyakonov-theory Shur\u27s was applied in this dissertation to achieve tunable THz detection and emission by plasma waves in high carrier density channels of field-effect devices. The first major contribution of this dissertation is developing graphene-based THz plasmonics detector with high responsivity. An upside-down free-standing graphene in a field effect transistor based resonant room temperature THz detector device with significantly improved mobility and gate control has been presented. The highest achieved responsivity is ~3.1kV/W, which is more than 10 times higher than any THz detector reported till now. The active region is predominantly single-layer graphene with multi-grains, even though the fabricated graphene THz detector has the highest responsivity. The challenges encountered during the fabrication and measurement of the graphene-based detector have been described, along with a strategy to overcome them while preserving high graphene mobility. In our new design, a monolayer of hBN underneath the graphene layer has been deposited to increase the mobility and electron concentration rate further. We also investigated the diamond-based FETs for their potential characteristics as a THz emitters and detectors. Diamond\u27s wide bandgap, high breakdown field, and high thermal conductivity attributes make it a potential semiconductor material for high voltage, high power, and high-temperature operation. Diamond is a good choice for THz and sub-THz applications because of its high optical phonon scattering and high momentum relaxation time. Numerical and analytical studies of diamond materials, including p-diamond and n-diamond materials, are presented, indicating their effectiveness as a prospective contender for high temperature and high power-based terahertz applications These detectors are expected to be a strong competitor for future THz on-chip applications due to their high sensitivity, low noise, tunability, compact size, mobility, faster response time, room temperature operation, and lower cost. Furthermore, when plasma wave instabilities are induced with the proper biasing, the same devices can be employed as THz emitters, which are expected to have a higher emission power. Another key contribution is developing a method for detecting counterfeit, damaged, forged, or defective ICs has been devised utilizing a new non-destructive and unobtrusive terahertz testing approach to address the crucial point of hardware cybersecurity and system reliability. The response of MMICs, VLSI, and ULSIC to incident terahertz and sub-terahertz radiation at the circuit pins are measured and analyzed using deep learning. More sophisticated terahertz response profiles and signatures of specific ICs can be created by measuring a more significant number of pins under different frequencies, polarizations, and depth of focus. The proposed method has no effect on ICs operation and could provide precise ICs signatures. The classification process between the secure and unsecure ICs images has been explained using data augmentation and transfer learning-based convolution neural network with ~98% accuracy. A planar nanomatryoshka type core-shell resonator with hybrid toroidal moments is shown both experimentally and analytically, allowing unique characteristics to be explored. This resonator may be utilized for accurate sensing, immunobiosensing, quick switching, narrow-band filters, and other applications

    Diode laser based velocity sensors for industrial applications

    Get PDF

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Combining omnidirectional vision with polarization vision for robot navigation

    Get PDF
    La polarisation est le phénomène qui décrit les orientations des oscillations des ondes lumineuses qui sont limitées en direction. La lumière polarisée est largement utilisée dans le règne animal,à partir de la recherche de nourriture, la défense et la communication et la navigation. Le chapitre (1) aborde brièvement certains aspects importants de la polarisation et explique notre problématique de recherche. Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe de nombreuses applications qui peuvent bénéficier d'une telle combinaison en vision par ordinateur et en robotique, en particulier pour l'estimation d'attitude et les applications de navigation. Le chapitre (2) couvre essentiellement l'état de l'art de l'estimation d'attitude basée sur la vision.Quand la lumière non-polarisée du soleil pénètre dans l'atmosphère, l'air entraine une diffusion de Rayleigh, et la lumière devient partiellement linéairement polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière naturelle et couvre l'état de l'art des méthodes d'acquisition des motifs de polarisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par exemple fisheye et capteurs catadioptriques). Nous expliquons également les caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle dérivation théorique de son angle de polarisation.Notre objectif est d'obtenir une vue omnidirectionnelle à 360 associée aux caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles. Généralement, la surface réfléchissante est métallique et donc l'état de polarisation de la lumière incidente, qui est le plus souvent partiellement linéairement polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A partir de la mesure de l'état de polarisation de la lumière réfléchie, nous voulons obtenir l'état de polarisation incident. Le chapitre (4) propose une nouvelle méthode pour mesurer les paramètres de polarisation de la lumière en utilisant un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du rayon incident est démontré à partir de trois composants du vecteur de Stokes du rayon réfléchi sur les quatre existants.Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal et azimutal du soleil peuvent être directement estimés à l'aide de ces modèles. Le chapitre (5) traite de l'orientation et de la navigation de robot basées sur la polarisation et différents algorithmes sont proposés pour estimer ces angles dans ce chapitre. A notre connaissance, l'angle zénithal du soleil est pour la première fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous proposons également d'estimer l'orientation d'un véhicule à partir de ces motifs de polarisation.Enfin, le travail est conclu et les possibles perspectives de recherche sont discutées dans le chapitre (6). D'autres exemples de schémas de polarisation de la lumière naturelle, leur calibrage et des applications sont proposées en annexe (B).Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique omnidirectionnelle en plus des approches conventionnelles. Cela inclut l'orientation bio-inspirée des robots, des applications de navigation, ou bien la localisation en plein air pour laquelle les motifs de polarisation de la lumière naturelle associés à l'orientation du soleil à une heure précise peuvent aboutir à la localisation géographique d'un véhiculePolarization is the phenomenon that describes the oscillations orientations of the light waves which are restricted in direction. Polarized light has multiple uses in the animal kingdom ranging from foraging, defense and communication to orientation and navigation. Chapter (1) briefly covers some important aspects of polarization and explains our research problem. We are aiming to use a polarimetric-catadioptric sensor since there are many applications which can benefit from such combination in computer vision and robotics specially robot orientation (attitude estimation) and navigation applications. Chapter (2) mainly covers the state of art of visual based attitude estimation.As the unpolarized sunlight enters the Earth s atmosphere, it is Rayleigh-scattered by air, and it becomes partially linearly polarized. This skylight polarization provides a signi cant clue to understanding the environment. Its state conveys the information for obtaining the sun orientation. Robot navigation, sensor planning, and many other applications may bene t from using this navigation clue. Chapter (3) covers the state of art in capturing the skylight polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric sensors). It also explains the skylight polarization characteristics and gives a new theoretical derivation of the skylight angle of polarization pattern. Our aim is to obtain an omnidirectional 360 view combined with polarization characteristics. Hence, this work is based on catadioptric sensors which are composed of reflective surfaces and lenses. Usually the reflective surface is metallic and hence the incident skylight polarization state, which is mostly partially linearly polarized, is changed to be elliptically polarized after reflection. Given the measured reflected polarization state, we want to obtain the incident polarization state. Chapter (4) proposes a method to measure the light polarization parameters using a catadioptric sensor. The possibility to measure the incident Stokes is proved given three Stokes out of the four reflected Stokes. Once the incident polarization patterns are available, the solar angles can be directly estimated using these patterns. Chapter (5) discusses polarization based robot orientation and navigation and proposes new algorithms to estimate these solar angles where, to the best of our knowledge, the sun zenith angle is firstly estimated in this work given these incident polarization patterns. We also propose to estimate any vehicle orientation given these polarization patterns. Finally the work is concluded and possible future research directions are discussed in chapter (6). More examples of skylight polarization patterns, their calibration, and the proposed applications are given in appendix (B). Our work may pave the way to move from the conventional polarization vision world to the omnidirectional one. It enables bio-inspired robot orientation and navigation applications and possible outdoor localization based on the skylight polarization patterns where given the solar angles at a certain date and instant of time may infer the current vehicle geographical location.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF
    • …
    corecore