66 research outputs found

    Advanced imaging and data mining technologies for medical and food safety applications

    Get PDF
    As one of the most fast-developing research areas, biological imaging and image analysis receive more and more attentions, and have been already widely applied in many scientific fields including medical diagnosis and food safety inspection. To further investigate such a very interesting area, this research is mainly focused on advanced imaging and pattern recognition technologies in both medical and food safety applications, which include 1) noise reduction of ultra-low-dose multi-slice helical CT imaging for early lung cancer screening, and 2) automated discrimination between walnut shell and meat under hyperspectral florescence imaging. In the medical imaging and diagnosis area, because X-ray computed tomography (CT) has been applied to screen large populations for early lung cancer detection during the last decade, more and more attentions have been paid to studying low-dose, even ultra-low-dose X-ray CTs. However, reducing CT radiation exposure inevitably increases the noise level in the sinogram, thereby degrading the quality of reconstructed CT images. Thus, how to reduce the noise levels in the low-dose CT images becomes a meaningful topic. In this research, a nonparametric smoothing method with block based thin plate smoothing splines and the roughness penalty was introduced to restore the ultra-low-dose helical CT raw data, which was acquired under 120 kVp / 10 mAs protocol. The objective thorax image quality evaluation was first conducted to assess the image quality and noise level of proposed method. A web-based subjective evaluation system was also built for the total of 23 radiologists to compare proposed approach with traditional sinogram restoration method. Both objective and subjective evaluation studies showed the effectiveness of proposed thin-plate based nonparametric regression method in sinogram restoration of multi-slice helical ultra-low-dose CT. In food quality inspection area, automated discrimination between walnut shell and meat has become an imperative task in the walnut postharvest processing industry in the U.S. This research developed two hyperspectral fluorescence imaging based approaches, which were capable of differentiating walnut small shell fragments from meat. Firstly, a principal component analysis (PCA) and Gaussian mixture model (PCA-GMM)-based Bayesian classification method was introduced. PCA was used to extract features, and then the optimal number of components in PCA was selected by a cross-validation technique. The PCA-GMM-based Bayesian classifier was further applied to differentiate the walnut shell and meat according to the class-conditional probability and the prior estimated by the Gaussian mixture model. The experimental results showed the effectiveness of this PCA-GMM approach, and an overall 98.2% recognition rate was achieved. Secondly, Gaussian-kernel based Support Vector Machine (SVM) was presented for the walnut shell and meat discrimination in the hyperspectral florescence imagery. SVM was applied to seek an optimal low to high dimensional mapping such that the nonlinear separable input data in the original input data space became separable on the mapped high dimensional space, and hence fulfilled the classification between walnut shell and meat. An overall recognition rate of 98.7% was achieved by this method. Although the hyperspectral fluorescence imaging is capable of differentiating between walnut shell and meat, one persistent problem is how to deal with huge amount of data acquired by the hyperspectral imaging system, and hence improve the efficiency of application system. To solve this problem, an Independent Component Analysis with k-Nearest Neighbor Classifier (ICA-kNN) approach was presented in this research to reduce the data redundancy while not sacrifice the classification performance too much. An overall 90.6% detection rate was achieved given 10 optimal wavelengths, which constituted only 13% of the total acquired hyperspectral image data. In order to further evaluate the proposed method, the classification results of the ICA-kNN approach were also compared to the kNN classifier method alone. The experimental results showed that the ICA-kNN method with fewer wavelengths had the same performance as the kNN classifier alone using information from all 79 wavelengths. This demonstrated the effectiveness of the proposed ICA-kNN method for the hyperspectral band selection in the walnut shell and meat classification

    HYPERSPECTRAL IMAGING AND PATTERN RECOGNITION TECHNOLOGIES FOR REAL TIME FRUIT SAFETY AND QUALITY INSPECTION

    Get PDF
    Hyperspectral band selection and band combination has become a powerful tool and have gained enormous interest among researchers. An important task in hyperspectral data processing is to reduce the redundancy of the spectral and spatial information without losing any valuable details that are needed for the subsequent detection, discrimination and classification processes. An integrated principal component analysis (PCA) and Fisher linear discriminant (FLD) method has been developed for feature band selection, and other pattern recognition technologies have been applied and compared with the developed method. The results on different types of defects from cucumber and apple samples show that the integrated PCA-FLD method outperforms PCA, FLD and canonical discriminant methods when they are used separately for classification. The integrated method adds a new tool for the multivariate analysis of hyperspectral images and can be extended to other hyperspectral imaging applications. Dimensionality reduction not only serves as the first step of data processing that leads to a significant decrease in computational complexity in the successive procedures, but also a research tool for determining optimal spectra requirement for online automatic inspection of fruit. In this study, the hyperspectral research shows that the near infrared spectrum at 753nm is best for detecting apple defect. When applied for online apple defect inspection, over 98% of good apple detection rate is achieved. However, commercially available apple sorting and inspection machines cannot effectively solve the stem-calyx problems involved in automatic apple defects detection. In this study, a dual-spectrum NIR/MIR sensing method is applied. This technique can effectively distinguish true defects from stems and calyxes, which leads to a potential solution of the problem. The results of this study will advance the technology in fruit safety and quality inspection and improve the cost-effectiveness of fruit packing processes

    A Neural Network Approach to Identify Hyperspectral Image Content

    Get PDF
    A Hyperspectral is the imaging technique that contains very large dimension data with the hundreds of channels. Meanwhile, the Hyperspectral Images (HISs) delivers the complete knowledge of imaging; therefore applying a classification algorithm is very important tool for practical uses. The HSIs are always having a large number of correlated and redundant feature, which causes the decrement in the classification accuracy; moreover, the features redundancy come up with some extra burden of computation that without adding any beneficial information to the classification accuracy. In this study, an unsupervised based Band Selection Algorithm (BSA) is considered with the Linear Projection (LP) that depends upon the metric-band similarities. Afterwards Monogenetic Binary Feature (MBF) has consider to perform the ‘texture analysis’ of the HSI, where three operational component represents the monogenetic signal such as; phase, amplitude and orientation. In post processing classification stage, feature-mapping function can provide important information, which help to adopt the Kernel based Neural Network (KNN) to optimize the generalization ability. However, an alternative method of multiclass application can be adopt through KNN, if we consider the multi-output nodes instead of taking single-output node

    Investigation of feature extraction algorithms and techniques for hyperspectral images.

    Get PDF
    Doctor of Philosophy (Computer Engineering). University of KwaZulu-Natal. Durban, 2017.Hyperspectral images (HSIs) are remote-sensed images that are characterized by very high spatial and spectral dimensions and nd applications, for example, in land cover classi cation, urban planning and management, security and food processing. Unlike conventional three bands RGB images, their high dimensional data space creates a challenge for traditional image processing techniques which are usually based on the assumption that there exists su cient training samples in order to increase the likelihood of high classi cation accuracy. However, the high cost and di culty of obtaining ground truth of hyperspectral data sets makes this assumption unrealistic and necessitates the introduction of alternative methods for their processing. Several techniques have been developed in the exploration of the rich spectral and spatial information in HSIs. Speci cally, feature extraction (FE) techniques are introduced in the processing of HSIs as a necessary step before classi cation. They are aimed at transforming the high dimensional data of the HSI into one of a lower dimension while retaining as much spatial and/or spectral information as possible. In this research, we develop semi-supervised FE techniques which combine features of supervised and unsupervised techniques into a single framework for the processing of HSIs. Firstly, we developed a feature extraction algorithm known as Semi-Supervised Linear Embedding (SSLE) for the extraction of features in HSI. The algorithm combines supervised Linear Discriminant Analysis (LDA) and unsupervised Local Linear Embedding (LLE) to enhance class discrimination while also preserving the properties of classes of interest. The technique was developed based on the fact that LDA extracts features from HSIs by discriminating between classes of interest and it can only extract C 1 features provided there are C classes in the image by extracting features that are equivalent to the number of classes in the HSI. Experiments show that the SSLE algorithm overcomes the limitation of LDA and extracts features that are equivalent to ii iii the number of classes in HSIs. Secondly, a graphical manifold dimension reduction (DR) algorithm known as Graph Clustered Discriminant Analysis (GCDA) is developed. The algorithm is developed to dynamically select labeled samples from the pool of available unlabeled samples in order to complement the few available label samples in HSIs. The selection is achieved by entwining K-means clustering with a semi-supervised manifold discriminant analysis. Using two HSI data sets, experimental results show that GCDA extracts features that are equivalent to the number of classes with high classi cation accuracy when compared with other state-of-the-art techniques. Furthermore, we develop a window-based partitioning approach to preserve the spatial properties of HSIs when their features are being extracted. In this approach, the HSI is partitioned along its spatial dimension into n windows and the covariance matrices of each window are computed. The covariance matrices of the windows are then merged into a single matrix through using the Kalman ltering approach so that the resulting covariance matrix may be used for dimension reduction. Experiments show that the windowing approach achieves high classi cation accuracy and preserves the spatial properties of HSIs. For the proposed feature extraction techniques, Support Vector Machine (SVM) and Neural Networks (NN) classi cation techniques are employed and their performances are compared for these two classi ers. The performances of all proposed FE techniques have also been shown to outperform other state-of-the-art approaches

    Multispectral Method for Apple Defect Detection using Hyperspectral Imaging System

    Get PDF
    Hyperspectral imaging is a non-destructive detection technology and a powerful analytical tool that integrates conventional imaging and spectroscopy to get both spatial and spectral information from the objects for food safety and quality analysis. A recently developed hyperspectral imaging system was used to investigate the wavelength between 530nm and 835nm to detect defects on Red Delicious apples. The combination of band ratio method and relative intensity method were developed in this paper, which using the multispectral wavebands selected from hyperspectral images. The results showed that the hyperspectral imaging system with the properly developed multispectral method could generally identify 95% of the defects on apple surface accurately. The developed algorithms could help enhance food safety and protect public health while reducing human error and labor cost for food industr

    QUEST Hierarchy for Hyperspectral Face Recognition

    Get PDF
    Face recognition is an attractive biometric due to the ease in which photographs of the human face can be acquired and processed. The non-intrusive ability of many surveillance systems permits face recognition applications to be used in a myriad of environments. Despite decades of impressive research in this area, face recognition still struggles with variations in illumination, pose and expression not to mention the larger challenge of willful circumvention. The integration of supporting contextual information in a fusion hierarchy known as QUalia Exploitation of Sensor Technology (QUEST) is a novel approach for hyperspectral face recognition that results in performance advantages and a robustness not seen in leading face recognition methodologies. This research demonstrates a method for the exploitation of hyperspectral imagery and the intelligent processing of contextual layers of spatial, spectral, and temporal information. This approach illustrates the benefit of integrating spatial and spectral domains of imagery for the automatic extraction and integration of novel soft features (biometric). The establishment of the QUEST methodology for face recognition results in an engineering advantage in both performance and efficiency compared to leading and classical face recognition techniques. An interactive environment for the testing and expansion of this recognition framework is also provided

    Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables

    Get PDF
    Over the past decade, hyperspectral imaging has been rapidly developing and widely used as an emerging scientific tool in nondestructive fruit and vegetable quality assessment. Hyperspectral imaging technique integrates both the imaging and spectroscopic techniques into one system, and it can acquire a set of monochromatic images at almost continuous hundreds of thousands of wavelengths. Many researches based on spatial image and/or spectral image processing and analysis have been published proposing the use of hyperspectral imaging technique in the field of quality assessment of fruits and vegetables. This chapter presents a detailed overview of the introduction, latest developments and applications of hyperspectral imaging in the nondestructive assessment of fruits and vegetables. Additionally, the principal components, basic theories, and corresponding processing and analytical methods are also reported in this chapter

    Multimode Hyperspectral Imaging for Food Quality and Safety

    Get PDF
    Food safety and quality are becoming progressively important, and a failure to implement monitoring processes and identify anomalies in composition, production, and distribution can lead to severe financial and customer health damages. If consumers were uncertain about food safety and quality, the impact could be profound; hence, we need better ways of minimizing such risks. On the data management side, the rise of artificial intelligence, data analytics, the Internet of Things, and blockchain all provide enormous opportunities for supply chain management and liability management, but the impact of any approach starts with the quality of the relevant data. Here, we present state-of-the-art spectroscopic technologies including hyperspectral reflectance, fluorescence imaging as well as Raman spectroscopy, and speckle imaging that are all validated for food safety and quality applications. We believe a multimode approach comprising of a number of these synergetic optical detection modes is needed for the highest performance. We present a plan where our implementations reflect this concept through a multimode tabletop system in the sense that a large, real-time production-level device would be based on more modes than this mid-level one, while a handheld, portable unit may only address fewer challenges, but with a lower cost and size
    • …
    corecore