110 research outputs found

    Coverage & cooperation: Completing complex tasks as quickly as possible using teams of robots

    Get PDF
    As the robotics industry grows and robots enter our homes and public spaces, they are increasingly expected to work in cooperation with each other. My thesis focuses on multirobot planning, specifically in the context of coverage robots, such as robotic lawnmowers and vacuum cleaners. Two problems unique to multirobot teams are task allocation and search. I present a task allocation algorithm which balances the workload amongst all robots in the team with the objective of minimizing the overall mission time. I also present a search algorithm which robots can use to find lost teammates. It uses a probabilistic belief of a target robot’s position to create a planning tree and then searches by following the best path in the tree. For robust multirobot coverage, I use both the task allocation and search algorithms. First the coverage region is divided into a set of small coverage tasks which minimize the number of turns the robots will need to take. These tasks are then allocated to individual robots. During the mission, robots replan with nearby robots to rebalance the workload and, once a robot has finished its tasks, it searches for teammates to help them finish their tasks faster

    A Novel Approach To Intelligent Navigation Of A Mobile Robot In A Dynamic And Cluttered Indoor Environment

    Get PDF
    The need and rationale for improved solutions to indoor robot navigation is increasingly driven by the influx of domestic and industrial mobile robots into the market. This research has developed and implemented a novel navigation technique for a mobile robot operating in a cluttered and dynamic indoor environment. It divides the indoor navigation problem into three distinct but interrelated parts, namely, localization, mapping and path planning. The localization part has been addressed using dead-reckoning (odometry). A least squares numerical approach has been used to calibrate the odometer parameters to minimize the effect of systematic errors on the performance, and an intermittent resetting technique, which employs RFID tags placed at known locations in the indoor environment in conjunction with door-markers, has been developed and implemented to mitigate the errors remaining after the calibration. A mapping technique that employs a laser measurement sensor as the main exteroceptive sensor has been developed and implemented for building a binary occupancy grid map of the environment. A-r-Star pathfinder, a new path planning algorithm that is capable of high performance both in cluttered and sparse environments, has been developed and implemented. Its properties, challenges, and solutions to those challenges have also been highlighted in this research. An incremental version of the A-r-Star has been developed to handle dynamic environments. Simulation experiments highlighting properties and performance of the individual components have been developed and executed using MATLAB. A prototype world has been built using the WebotsTM robotic prototyping and 3-D simulation software. An integrated version of the system comprising the localization, mapping and path planning techniques has been executed in this prototype workspace to produce validation results

    VR-Caps: A Virtual Environment for Capsule Endoscopy

    Full text link
    Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain. Physically-realistic simulations providing synthetic data have emerged as a solution to the development of data-driven algorithms. In this work, we present a comprehensive simulation platform for capsule endoscopy operations and introduce VR-Caps, a virtual active capsule environment that simulates a range of normal and abnormal tissue conditions (e.g., inflated, dry, wet etc.) and varied organ types, capsule endoscope designs (e.g., mono, stereo, dual and 360{\deg}camera), and the type, number, strength, and placement of internal and external magnetic sources that enable active locomotion. VR-Caps makes it possible to both independently or jointly develop, optimize, and test medical imaging and analysis software for the current and next-generation endoscopic capsule systems. To validate this approach, we train state-of-the-art deep neural networks to accomplish various medical image analysis tasks using simulated data from VR-Caps and evaluate the performance of these models on real medical data. Results demonstrate the usefulness and effectiveness of the proposed virtual platform in developing algorithms that quantify fractional coverage, camera trajectory, 3D map reconstruction, and disease classification.Comment: 18 pages, 14 figure

    A Holistic Approach to Energy Harvesting for Indoor Robots:Theoretical Framework and Experimental Validations

    Get PDF
    Service robotics is a fast expanding market. Inside households, domestic robots can now accomplish numerous tasks, such as floor cleaning, surveillance, or remote presence. Their sales have considerably increased over the past years. Whereas 1.05 million domestic service robots were reportedly sold in 2009, at least 2.7 million units were sold in 2013. Consequently, this growth gives rise to an increase of the energy needs to power such a large and growing fleet of robots. However, the unique properties of mobile robots open some new fields of research. We must find technologies that are suitable for decreasing the energy requirements and thus further advance towards a sustainable development. This thesis tackles two fundamental goals based on a holistic approach of the global problem. The first goal is to reduce the energy needs by identifying key technologies in making energy-efficient robots. The second goal is to leverage innovative indoor energy sources to increase the ratio of renewable energies scavenged from the environment. To achieve our first goal, new energy-wise metrics are applied to real robotic hardware. This gives us the means to assess the impact of some technologies on the overall energy balance. First, we analysed seven robotic vacuum cleaners from a representative sample of the market that encompasses a wide variety of technologies. Simultaneous Localisation and Mapping (SLAM) was identified as a key technology to reduce energy needs when carrying out such tasks. Even if the instantaneous power is slightly increased, the completion time of the task is greatly reduced. We also analysed the needed sensors to achieve SLAM, as they are largely diversified. This work tested three sensors using three different technologies. We identified several important metrics. As of our second goal, potential energy sources are compared to the needs of an indoor robot. The sunshine coming through a building's apertures is identified as a promising source of renewable power. Numerical simulations showed how a mobile robot is mandatory to take full advantage of this previously unseen situation, as well as the influence of the geometric parameters on the yearly energy income under ideal sunny conditions. When considering a real system, the major difficulty to overcome is the tracking of the sunbeam along the day. The proposed algorithm uses a hybrid method. A high-level cognitive approach is responsible for the initial placement. Following realignments during the day are performed by a low-level reactive behaviour. A solar harvesting module was developed for our research robot. The tests conducted inside a controlled environment demonstrate the feasibility of this concept and the good performances of the aforementioned algorithm. Based on a realistic scenario and weather conditions, we computed that between 1 and 14 days of recharge could be necessary for a single cleaning task. In the future, our innovative technology could greatly lower the energy needs of service robots. However, it is not completely possible to abandon the recharge station due to occasional bad weather. The acceptance of this technology inside the user's home ecosystem remains to be studied

    Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities

    Full text link
    Robotics and Artificial Intelligence (AI) have been inextricably intertwined since their inception. Today, AI-Robotics systems have become an integral part of our daily lives, from robotic vacuum cleaners to semi-autonomous cars. These systems are built upon three fundamental architectural elements: perception, navigation and planning, and control. However, while the integration of AI-Robotics systems has enhanced the quality our lives, it has also presented a serious problem - these systems are vulnerable to security attacks. The physical components, algorithms, and data that make up AI-Robotics systems can be exploited by malicious actors, potentially leading to dire consequences. Motivated by the need to address the security concerns in AI-Robotics systems, this paper presents a comprehensive survey and taxonomy across three dimensions: attack surfaces, ethical and legal concerns, and Human-Robot Interaction (HRI) security. Our goal is to provide users, developers and other stakeholders with a holistic understanding of these areas to enhance the overall AI-Robotics system security. We begin by surveying potential attack surfaces and provide mitigating defensive strategies. We then delve into ethical issues, such as dependency and psychological impact, as well as the legal concerns regarding accountability for these systems. Besides, emerging trends such as HRI are discussed, considering privacy, integrity, safety, trustworthiness, and explainability concerns. Finally, we present our vision for future research directions in this dynamic and promising field

    Intelligent Navigation Service Robot Working in a Flexible and Dynamic Environment

    Get PDF
    Numerous sensor fusion techniques have been reported in the literature for a number of robotics applications. These techniques involved the use of different sensors in different configurations. However, in the case of food driving, the possibility of the implementation has been overlooked. In restaurants and food delivery spots, enhancing the food transfer to the correct table is neatly required, without running into other robots or diners or toppling over. In this project, a particular algorithm module has been proposed and implemented to enhance the robot driving methodology and maximize robot functionality, accuracy, and the food transfer experience. The emphasis has been on enhancing movement accuracy to reach the targeted table from the start to the end. Four major elements have been designed to complete this project, including mechanical, electrical, electronics, and programming. Since the floor condition greatly affecting the wheels and turning angle selection, the movement accuracy was improved during the project. The robot was successfully able to receive the command from the restaurant and go to deliver the food to the customers\u27 tables, considering any obstacles on the way to avoid. The robot has equipped with two trays to mount the food with well-configured voices to welcome and greet the customer. The performance has been evaluated and undertaken using a routine robot movement tests. As part of this study, the designed service wheeled robot required to be with a high-performance real-time processor. As long as the processor was adequate, the experimental results showed a highly effective search robot methodology. Having concluded from the study that a minimum number of sensors are needed if they are placed appropriately and used effectively on a robot\u27s body, as navigation could be performed by using a small set of sensors. The Arduino Due has been used to provide a real-time operating system. It has provided a very successful data processing and transfer throughout any regular operation. Furthermore, an easy-to-use application has been developed to improve the user experience, so that the operator can interact directly with the robot via a special setting screen. It is possible, using this feature, to modify advanced settings such as voice commands or IP address without having to return back to the code

    Towards adaptive and autonomous humanoid robots: from vision to actions

    Get PDF
    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions

    A flexible design framework for autonomous mowing

    Get PDF
    Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 93-95).This work outlines the creation of a flexible design framework for autonomous mowing to meet changing customer needs and functionality across a spectrum of applications from residential areas to sport complexes. The thesis has the objective of creating an optimized architecture to meet a range of functionality that delivers value in diverse customer mission segments. Additionally, autonomous mowing is supported by fast moving technology domains that create the need for technology selection strategies that anticipate future trends in critical metrics. Currently an early dominant design has been produced, but increasing competition is actively advancing the current state of the art for autonomous mowing. An analysis to determine where the value lies in the system, much like the evolution of the PC, determines when to shift between modular and integrated designs. As designs become modular and flexible the importance of knowing which areas of the system capture value and lead to revenue is critical for a company's continued success in the domain. Using this framework Pareto frontiers were developed using genetic algorithms that clearly show the sensitivity between manufacturing costs and total life cycle cost to the consumer using 970 generations. A platform architecture analysis provided a 9% increase in a portfolio Net Present Value by determining an optimum commonality and differentiation plan over that of individually optimized customer segment offerings. This analysis also determines if an open source approach to innovation is viable for increased customer satisfaction while supporting increased manufacturer revenues (Hippel, 2005).by Justin Kraft.S.M.in Engineering and Managemen
    corecore