82 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Computational modeling of biological nanopores

    Full text link
    Throughout our history, we, humans, have sought to better control and understand our environment. To this end, we have extended our natural senses with a host of sensors-tools that enable us to detect both the very large, such as the merging of two black holes at a distance of 1.3 billion light-years from Earth, and the very small, such as the identification of individual viral particles from a complex mixture. This dissertation is devoted to studying the physical mechanisms that govern a tiny, yet highly versatile sensor: the biological nanopore. Biological nanopores are protein molecules that form nanometer-sized apertures in lipid membranes. When an individual molecule passes through this aperture (i.e., "translocates"), the temporary disturbance of the ionic current caused by its passage reveals valuable information on its identity and properties. Despite this seemingly straightforward sensing principle, the complexity of the interactions between the nanopore and the translocating molecule implies that it is often very challenging to unambiguously link the changes in the ionic current with the precise physical phenomena that cause them. It is here that the computational methods employed in this dissertation have the potential to shine, as they are capable of modeling nearly all aspects of the sensing process with near atomistic precision. Beyond familiarizing the reader with the concepts and state-of-the-art of the nanopore field, the primary goals of this dissertation are fourfold: (1) Develop methodologies for accurate modeling of biological nanopores; (2) Investigate the equilibrium electrostatics of biological nanopores; (3) Elucidate the trapping behavior of a protein inside a biological nanopore; and (4) Mapping the transport properties of a biological nanopore. In the first results chapter of this thesis (Chapter 3), we used 3D equilibrium simulations [...]Comment: PhD thesis, 306 pages. Source code available at https://github.com/willemsk/phdthesis-tex

    PhD students´day FMST 2023

    Get PDF
    The authors gave oral presentations of their work online as part of a Doctoral Students’ Day held on 15 June 2023, and they reflect the challenging work done by the students and their supervisors in the fields of metallurgy, materials engineering and management. There are 82 contributions in total, covering a range of areas – metallurgical technology, thermal engineering and fuels in industry, chemical metallurgy, nanotechnology, materials science and engineering, and industrial systems management. This represents a cross-section of the diverse topics investigated by doctoral students at the faculty, and it will provide a guide for Master’s graduates in these or similar disciplines who are interested in pursuing their scientific careers further, whether they are from the faculty here in Ostrava or engineering faculties elsewhere in the Czech Republic. The quality of the contributions varies: some are of average quality, but many reach a standard comparable with research articles published in established journals focusing on disciplines of materials technology. The diversity of topics, and in some cases the excellence of the contributions, with logical structure and clearly formulated conclusions, reflect the high standard of the doctoral programme at the faculty.Ostrav

    Design Space Extrapolation and Inverse Design using Machine Learning

    Get PDF
    Modern electronic systems need to be analyzed and designed carefully for their operation at higher frequencies and many control parameters. This process takes up a huge time for computations and design cycles. To this effect, in this webinar, we investigate machine learning techniques for power delivery, signal integrity and EM problems. More specifically, we present two broad design strategies. Often one needs to predict the structure behavior outside the range of simulations. This work deals with extrapolation in two domains. (1) We propose HilbertNet for complex-valued causal extrapolation of frequency responses. The proposed architecture accurately predicts the out-of-band frequency response by modelling the temporal correlations between in-band frequency samples using specialized recurrent neural networks. (2) We propose Transposed Convolutional Networks to model spatial correlations in the design space. The design space comprises of all the geometrical and material parameters characterizing the response. The convolutional networks can extrapolate the design space in as high as 11 dimensions because of inducing spatial bias into the model. These techniques constitute forward design. We also present some recent methods developed for inverse design of electronic systems. The goal in inverse design is to estimate the best set of design space values that generate the response space. We employ invertible neural networks to model the non-linear mapping between the design space and the response space. We show the effectiveness of these techniques in signal and power integrity applications.Ph.D

    Carbon Zero by Off-grid Technologies

    Get PDF
    To mitigate the effects of climate change, low-carbon developments, such as zero-carbon building systems, are unavoidable in both existing and future structures. In this regard, a comprehensive analysis of four off-grid systems (Grey water system, Green curtain, Off-grid toilet, and Double roof house) was done in the off-grid tech lab at The University of Sydney. The mentioned systems were designed, constructed, and operated for a certain period (3 - 15 months), proving their credibility and effectiveness. Out of the four systems, only Double roof house was a scaled-down model (3:1). The work All prototypes collectively aimed to determine if off-grid systems can be operated in a way that does not compromise the quality of life. The research project embraced a biophilic approach, viewing each prototype as part of a larger system interacting with nature. Waste generation was minimized, and valuable performances were achieved with the least resource usage and minimal human interventions. The prototypes endorsed and demonstrated that sustainability and modernity can coexist without compromising on lifestyle. For instance, the Grey water system provided water to plants without any waste going out of the project boundaries, the Off-grid toilet functioned as a contemporary toilet while producing compost, the Double roof house roofing system powered appliances and ensured indoor comfort, and the Green curtain offered indoor comfort with indoor living greenery. These findings highlighted the feasibility of off-grid technologies without sacrificing modern-day conveniences

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Materials Processing for Production of Nanostructured Thin Films

    Get PDF
    Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage

    Metal Nanoparticles-Polymer Hybrid Materials

    Get PDF
    Metal nanoparticles/polymers hybrid materials have significantly contributed to the develop of nanotechnology. Moreover, these hybrid materials can respond to stimuli (e.g., pH, temperature, light, magnetic field) or self-degrade in a controlled manner to release metal nanoparticles or therapeutics encapsulated. Functional and structural hybrid materials provide opportunities for creative fields, remarkable properties, and future advanced applications. This Special Issue focuses on highlighting the progress of new hybrid materials, based on metal nanoparticles and polymers, their design, preparation, functionalization, characterization, and advanced applications
    corecore