210 research outputs found

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Antecipação na tomada de decisão com múltiplos critérios sob incerteza

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A presença de incerteza em resultados futuros pode levar a indecisões em processos de escolha, especialmente ao elicitar as importâncias relativas de múltiplos critérios de decisão e de desempenhos de curto vs. longo prazo. Algumas decisões, no entanto, devem ser tomadas sob informação incompleta, o que pode resultar em ações precipitadas com consequências imprevisíveis. Quando uma solução deve ser selecionada sob vários pontos de vista conflitantes para operar em ambientes ruidosos e variantes no tempo, implementar alternativas provisórias flexíveis pode ser fundamental para contornar a falta de informação completa, mantendo opções futuras em aberto. A engenharia antecipatória pode então ser considerada como a estratégia de conceber soluções flexíveis as quais permitem aos tomadores de decisão responder de forma robusta a cenários imprevisíveis. Essa estratégia pode, assim, mitigar os riscos de, sem intenção, se comprometer fortemente a alternativas incertas, ao mesmo tempo em que aumenta a adaptabilidade às mudanças futuras. Nesta tese, os papéis da antecipação e da flexibilidade na automação de processos de tomada de decisão sequencial com múltiplos critérios sob incerteza é investigado. O dilema de atribuir importâncias relativas aos critérios de decisão e a recompensas imediatas sob informação incompleta é então tratado pela antecipação autônoma de decisões flexíveis capazes de preservar ao máximo a diversidade de escolhas futuras. Uma metodologia de aprendizagem antecipatória on-line é então proposta para melhorar a variedade e qualidade dos conjuntos futuros de soluções de trade-off. Esse objetivo é alcançado por meio da previsão de conjuntos de máximo hipervolume esperado, para a qual as capacidades de antecipação de metaheurísticas multi-objetivo são incrementadas com rastreamento bayesiano em ambos os espaços de busca e dos objetivos. A metodologia foi aplicada para a obtenção de decisões de investimento, as quais levaram a melhoras significativas do hipervolume futuro de conjuntos de carteiras financeiras de trade-off avaliadas com dados de ações fora da amostra de treino, quando comparada a uma estratégia míope. Além disso, a tomada de decisões flexíveis para o rebalanceamento de carteiras foi confirmada como uma estratégia significativamente melhor do que a de escolher aleatoriamente uma decisão de investimento a partir da fronteira estocástica eficiente evoluída, em todos os mercados artificiais e reais testados. Finalmente, os resultados sugerem que a antecipação de opções flexíveis levou a composições de carteiras que se mostraram significativamente correlacionadas com as melhorias observadas no hipervolume futuro esperado, avaliado com dados fora das amostras de treinoAbstract: The presence of uncertainty in future outcomes can lead to indecision in choice processes, especially when eliciting the relative importances of multiple decision criteria and of long-term vs. near-term performance. Some decisions, however, must be taken under incomplete information, what may result in precipitated actions with unforeseen consequences. When a solution must be selected under multiple conflicting views for operating in time-varying and noisy environments, implementing flexible provisional alternatives can be critical to circumvent the lack of complete information by keeping future options open. Anticipatory engineering can be then regarded as the strategy of designing flexible solutions that enable decision makers to respond robustly to unpredictable scenarios. This strategy can thus mitigate the risks of strong unintended commitments to uncertain alternatives, while increasing adaptability to future changes. In this thesis, the roles of anticipation and of flexibility on automating sequential multiple criteria decision-making processes under uncertainty are investigated. The dilemma of assigning relative importances to decision criteria and to immediate rewards under incomplete information is then handled by autonomously anticipating flexible decisions predicted to maximally preserve diversity of future choices. An online anticipatory learning methodology is then proposed for improving the range and quality of future trade-off solution sets. This goal is achieved by predicting maximal expected hypervolume sets, for which the anticipation capabilities of multi-objective metaheuristics are augmented with Bayesian tracking in both the objective and search spaces. The methodology has been applied for obtaining investment decisions that are shown to significantly improve the future hypervolume of trade-off financial portfolios for out-of-sample stock data, when compared to a myopic strategy. Moreover, implementing flexible portfolio rebalancing decisions was confirmed as a significantly better strategy than to randomly choosing an investment decision from the evolved stochastic efficient frontier in all tested artificial and real-world markets. Finally, the results suggest that anticipating flexible choices has lead to portfolio compositions that are significantly correlated with the observed improvements in out-of-sample future expected hypervolumeDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    A Comprehensive Optimization Framework for Designing Sustainable Renewable Energy Production Systems

    Get PDF
    As the world has recognized the importance of diversifying its energy resource portfolio away from fossil resources and more towards renewable resources such as biomass, there arises a need for developing strategies which can design renewable sustainable value chains that can be scaled up efficiently and provide tangible net environmental benefits from energy utilization. The objective of this research is to develop and implement a novel decision-making framework for the optimal design of renewable energy systems. The proposed optimization framework is based on a distributed, systematic approach which is composed of different layers including systems-based strategic optimization, detailed mechanistic modeling and operational level optimization. In the strategic optimization the model is represented by equations which describe physical flows of materials across the system nodes and financial flows that result from the system design and material movements. Market uncertainty is also incorporated into the model through stochastic programming. The output of the model includes optimal design of production capacity of the plant for the planning horizon by maximizing the net present value (NPV). The second stage consists of three main steps including simulation of the process in the simulation software, identification of critical sources of uncertainties through global sensitivity analysis, and employing stochastic optimization methodologies to optimize the operating condition of the plant under uncertainty. To exemplify the efficacy of the proposed framework a hypothetical lignocellulosic biorefinery based on sugar conversion platform that converts biomass to value-added biofuels and biobased chemicals is utilized as a case study. Furthermore, alternative technology options and possible process integrations in each section of the plant are analysed by exploiting the advantages of process simulation and the novel hybrid optimization framework. In conjunction with the simulation and optimization studies, the proposed framework develops quantitative metrics to associate economic values with technical barriers. The outcome of this work is a new distributed decision support framework which is intended to help economic development agencies, as well as policy makers in the renewable energy enterprises

    Multiobjective Planning and Design of Distributed Stormwater Harvesting and Treatment Systems through Optimization and Visual Analytics

    Get PDF
    Stormwater harvesting (SWH) is an important water sensitive urban design (WSUD) approach that provides an alternate water source and/or improves runoff quality through stormwater best management practice technologies (BMPs). Through integrated SWH system design at the development scale practitioners must account for trade-offs between cost, harvested volume, and water quality improvement performance which are usually dependent on design decisions for the type, size, and spatial distribution of BMPs. In catchment management planning, additional objectives such as catchment vegetation improvement and public recreation benefit need to be maximized for a catchment region within a limited budget. As such, planning and design of SWH systems with distributed BMPs is a complex problem that requires optimal allocation of limited resources to maximize multiple benefits. In this thesis, two innovative formal optimization approaches are presented for formulating and identifying optimal solutions to problems requiring distributed BMPs. Firstly, a multiobjective optimization framework is presented and applied to a case study for the conceptual design of integrated systems of BMPs for stormwater harvesting. The aim of this work is to develop a conceptual design modelling framework that handles the optimal placement of stormwater harvesting (SWH) infrastructure within an urban development. The framework produces preliminary SWH system designs representing optimal trade-offs between cost, water harvesting, and water quality improvement measures. Secondly, a many (>3) -objective optimization framework is presented and applied to a case study for catchment planning requiring the selection of a portfolio of distributed BMP projects. The framework produces portfolios that are optimal with respect to four objectives, and enables exploration of the many-objective trade-off surface using interactive visual analytics. In addition, a multi-stakeholder method is presented, which enables catchment managers and local government authorities to identify solutions that represent a compromise between 16 objectives and eight optimization problem representations using interactive visual analytics to encourage a negotiated solution. This thesis contains one paper accepted in the Journal of Water Resources Planning and Management (Paper 1), and one paper submitted (Paper 2), and one paper to be submitted (Paper 3) to peer-reviewed journals in the field of water resources management.Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental & Mining Engineering, 201

    Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Era

    Get PDF
    This chapter surveys the state-of-the-art in forecasting cryptocurrency value by Sentiment Analysis. Key compounding perspectives of current challenges are addressed, including blockchains, data collection, annotation, and filtering, and sentiment analysis metrics using data streams and cloud platforms. We have explored the domain based on this problem-solving metric perspective, i.e., as technical analysis, forecasting, and estimation using a standardized ledger-based technology. The envisioned tools based on forecasting are then suggested, i.e., ranking Initial Coin Offering (ICO) values for incoming cryptocurrencies, trading strategies employing the new Sentiment Analysis metrics, and risk aversion in cryptocurrencies trading through a multi-objective portfolio selection. Our perspective is rationalized on the perspective on elastic demand of computational resources for cloud infrastructures

    Heuristic Approaches to Portfolio Optimization.

    Get PDF
    One of the most frequently studied areas in finance is the classical mean-variance portfolio selection model pioneered by Harry Markowitz; which is also, undoubtedly recognized as the foundation of modern portfolio theory. The model in its basic form deals with the selection of portfolio of assets such that a reasonable trade-off is achieved between the conflicting objectives of maximum possible return at a minimum risk, given that the right choice of constituent assets is made and proper weights are allocated. However, despite its enormous contribution to this branch of knowledge, the model is not immune from criticisms ranging from those associated with its in ability to capture the realism of an investment setting - such as transaction costs, cardinality constraints, floor and ceiling constraints, etc. In this research we extended the classical model by incorporating into it the cardinality as well as the floor & ceiling constraints after which we implemented six different metaheuristic algorithms to solve this advanced model. We then designed and implemented some neighbourhood transition strategies to enable our designed algorithms solve the problem in an efficient and intelligent way. Furthermore, we proposed a new portfolio selection model with target-semivariance (as defined in a previous research) as the objective, and constrained by additional real life (cardinality and floor & ceiling) constraints

    Strategic Technology Maturation and Insertion (STMI): a requirements guided, technology development optimization process

    Get PDF
    This research presents a Decision Support System (DSS) process solution to a problem faced by Program Managers (PMs) early in a system lifecycle, when potential technologies are evaluated for placement within a system design. The proposed process for evaluation and selection of technologies incorporates computer based Operational Research techniques which automate and optimize key portions of the decision process. This computerized process allows the PM to rapidly form the basis of a Strategic Technology Plan (STP) designed to manage, mature and insert the technologies into the system design baseline and identify potential follow-on incremental system improvements. This process is designated Strategic Technology Maturation and Insertion (STMI). Traditionally, to build this STP, the PM must juggle system performance, schedule, and cost issues and strike a balance of new and old technologies that can be fielded to meet the requirements of the customer. To complicate this juggling skill, the PM is typically confronted with a short time frame to evaluate hundreds of potential technology solutions with thousands of potential interacting combinations within the system design. Picking the best combination of new and established technologies, plus selecting the critical technologies needing maturation investment is a significant challenge. These early lifecycle decisions drive the entire system design, cost and schedule well into production The STMI process explores a formalized and repeatable DSS to allow PMs to systematically tackle the problems with technology evaluation, selection and maturation. It gives PMs a tool to compare and evaluate the entire design space of candidate technology performance, incorporate lifecycle costs as an optimizer for a best value system design, and generate input for a strategic plan to mature critical technologies. Four enabling concepts are described and brought together to form the basis of STMI: Requirements Engineering (RE), Value Engineering (VE), system optimization and Strategic Technology Planning (STP). STMI is then executed in three distinct stages: Pre-process preparation, process operation and optimization, and post-process analysis. A demonstration case study prepares and implements the proposed STMI process in a multi-system (macro) concept down select and a specific (micro) single system design that ties into the macro design level decision

    An Evolutionary Approach to Multistage Portfolio Optimization

    No full text
    Portfolio optimization is an important problem in quantitative finance due to its application in asset management and corporate financial decision making. This involves quantitatively selecting the optimal portfolio for an investor given their asset return distribution assumptions, investment objectives and constraints. Analytical portfolio optimization methods suffer from limitations in terms of the problem specification and modelling assumptions that can be used. Therefore, a heuristic approach is taken where Monte Carlo simulations generate the investment scenarios and' a problem specific evolutionary algorithm is used to find the optimal portfolio asset allocations. Asset allocation is known to be the most important determinant of a portfolio's investment performance and also affects its risk/return characteristics. The inclusion of equity options in an equity portfolio should enable an investor to improve their efficient frontier due to options having a nonlinear payoff. Therefore, a research area of significant importance to equity investors, in which little research has been carried out, is the optimal asset allocation in equity options for an equity investor. A purpose of my thesis is to carry out an original analysis of the impact of allowing the purchase of put options and/or sale of call options for an equity investor. An investigation is also carried out into the effect ofchanging the investor's risk measure on the optimal asset allocation. A dynamic investment strategy obtained through multistage portfolio optimization has the potential to result in a superior investment strategy to that obtained from a single period portfolio optimization. Therefore, a novel analysis of the degree of the benefits of a dynamic investment strategy for an equity portfolio is performed. In particular, the ability of a dynamic investment strategy to mimic the effects ofthe inclusion ofequity options in an equity portfolio is investigated. The portfolio optimization problem is solved using evolutionary algorithms, due to their ability incorporate methods from a wide range of heuristic algorithms. Initially, it is shown how the problem specific parts ofmy evolutionary algorithm have been designed to solve my original portfolio optimization problem. Due to developments in evolutionary algorithms and the variety of design structures possible, a purpose of my thesis is to investigate the suitability of alternative algorithm design structures. A comparison is made of the performance of two existing algorithms, firstly the single objective stepping stone island model, where each island represents a different risk aversion parameter, and secondly the multi-objective Non-Dominated Sorting Genetic Algorithm2. Innovative hybrids of these algorithms which also incorporate features from multi-objective evolutionary algorithms, multiple population models and local search heuristics are then proposed. . A novel way is developed for solving the portfolio optimization by dividing my problem solution into two parts and then applying a multi-objective cooperative coevolution evolutionary algorithm. The first solution part consists of the asset allocation weights within the equity portfolio while the second solution part consists 'ofthe asset allocation weights within the equity options and the asset allocation weights between the different asset classes. An original portfolio optimization multiobjective evolutionary algorithm that uses an island model to represent different risk measures is also proposed.Imperial Users onl

    Infrastructure systems modeling using data visualization and trend extraction

    Get PDF
    “Current infrastructure systems modeling literature lacks frameworks that integrate data visualization and trend extraction needed for complex systems decision making and planning. Critical infrastructures such as transportation and energy systems contain interdependencies that cannot be properly characterized without considering data visualization and trend extraction. This dissertation presents two case analyses to showcase the effectiveness and improvements that can be made using these techniques. Case one examines flood management and mitigation of disruption impacts using geospatial characteristics as part of data visualization. Case two incorporates trend analysis and sustainability assessment into energy portfolio transitions. Four distinct contributions are made in this work and divided equally across the two cases. The first contribution identifies trends and flood characteristics that must be included as part of model development. The second contribution uses trend extraction to create a traffic management data visualization system based on the flood influencing factors identified. The third contribution creates a data visualization framework for energy portfolio analysis using a genetic algorithm and fuzzy logic. The fourth contribution develops a sustainability assessment model using trend extraction and time series forecasting of state-level electricity generation in a proposed transition setting. The data visualization and trend extraction tools developed and validated in this research will improve strategic infrastructure planning effectiveness”--Abstract, page iv
    corecore