1,591 research outputs found

    MIDAS: Automated Approach to Design Microwave Integrated Inductors and Transformers on Silicon

    Get PDF
    The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors and transformers that are not commonly available in the process design-kits of the technologies. In this work we present an auxiliary CAD tool for Microwave Inductor (and transformer) Design Automation on Silicon (MIDAS) that exploits commercial simulators and allows the implementation of an automatic design flow, including three-dimensional layout editing and electromagnetic simulations. In detail, MIDAS allows the designer to derive a preliminary sizing of the inductor (transformer) on the bases of the design entries (specifications). It draws the inductor (transformer) layers for the specific process design kit, including vias and underpasses, with or without patterned ground shield, and launches the electromagnetic simulations, achieving effective design automation with respect to the traditional design flow for RFICs. With the present software suite the complete design time is reduced significantly (typically 1 hour on a PC based on Intel® Pentium® Dual 1.80GHz CPU with 2-GB RAM). Afterwards both the device equivalent circuit and the layout are ready to be imported in the Cadence environment

    Ready-to-Fabricate RF Circuit Synthesis Using a Layout- and Variability-Aware Optimization-Based Methodology

    Get PDF
    In this paper, physical implementations and measurement results are presented for several Voltage Controlled Oscillators that were designed using a fully-automated, layout- and variability-aware optimization-based methodology. The methodology uses a highly accurate model, based on machine-learning techniques, to characterize inductors, and a multi-objective optimization algorithm to achieve a Pareto-optimal front containing optimal circuit designs offering different performance trade-offs. The final outcome of the proposed methodology is a set of design solutions (with their GDSII description available and ready-to-fabricate) that need no further designer intervention. Two key elements of the proposed methodology are the use of an optimization algorithm linked to an off-the-shelf simulator and an inductor model that yield EM-like accuracy but with much shorter evaluation times. Furthermore, the methodology guarantees the same high level of robustness against layout parasitics and variability that an expert designer would achieve with the verification tools at his/her disposal. The methodology is technology-independent and can be used for the design of radio frequency circuits. The results are validated with experimental measurements on a physical prototype

    Una aproximación multinivel para el diseño sistemático de circuitos integrados de radiofrecuencia.

    Get PDF
    Tesis reducida por acuerdo de confidencialidad.En un mercado bien establecido como el de las telecomunicaciones, donde se está evolucionando hacia el 5G, se estima que hoy en día haya más de 2 Mil Millones de usuarios de Smartphones. Solo de por sí, este número es asombroso. Pero nada se compara a lo que va a pasar en un futuro muy próximo. El próximo boom tecnológico está directamente conectado con el mercado emergente del internet of things (IoT). Se estima que, en 2020, habrá 20 Mil Millones de dispositivos físicos conectados y comunicando entre sí, lo que equivale a 4 dispositivos físicos por cada persona del planeta. Debido a este boom tecnológico, van a surgir nuevas e interesantes oportunidades de inversión e investigación. De hecho, se estima que en 2020 se van a invertir cerca de 3 Mil Millones de dólares solo en este mercado, un 50% más que en 2017. Todos estos dispositivos IoT tienen que comunicarse inalámbricamente entre sí, algo en lo que los circuitos de radiofrecuencia (RF) son imprescindibles. El problema es que el diseño de circuitos RF en tecnologías nanométricas se está haciendo extraordinariamente difícil debido a su creciente complejidad. Este hecho, combinado con los críticos compromisos entre las prestaciones de estos circuitos, tales como el consumo de energía, el área de chip, la fiabilidad de los chips, etc., provocan una reducción en la productividad en su diseño, algo que supone un problema debido a las estrictas restricciones time-to-market de las empresas. Es posible concluir, por tanto, que uno de los ámbitos en los que es tremendamente importante centrarse hoy en día, es el desarrollo de nuevas metodologías de diseño de circuitos RF que permitan al diseñador obtener circuitos que cumplan con especificaciones muy exigentes en un tiempo razonable. Debido a las complejas relaciones entre prestaciones de los circuitos RF (por ejemplo, ruido de fase frente a consumo de potencia en un oscilador controlado por tensión), es fácil comprender que el diseño de circuitos RF es una tarea extremadamente complicada y debe ser soportada por herramientas de diseño asistido por ordenador (EDA). En un escenario ideal, los diseñadores tendrían una herramienta EDA que podría generar automáticamente un circuito integrado (IC), algo definido en la literatura como un compilador de silicio. Con esta herramienta ideal, el usuario sólo estipularía las especificaciones deseadas para su sistema y la herramienta generaría automáticamente el diseño del IC listo para fabricar (lo que se denomina diseño físico o layout). Sin embargo, para sistemas complejos tales como circuitos RF, dicha herramienta no existe. La tesis que se presenta, se centra exactamente en el desarrollo de nuevas metodologías de diseño capaces de mejorar el estado del arte y acortar la brecha de productividad existente en el diseño de circuitos RF. Por lo tanto, con el fin de establecer una nueva metodología de diseño para sistemas RF, se han de abordar distintos cuellos de botella del diseño RF con el fin de diseñar con éxito dichos circuitos. El diseño de circuitos RF ha seguido tradicionalmente una estrategia basada en ecuaciones analíticas derivadas específicamente para cada circuito y que exige una gran experiencia del diseñador. Esto significa que el diseñador plantea una estrategia para diseñar el circuito manualmente y, tras varias iteraciones, normalmente logra que el circuito cumpla con las especificaciones deseadas. No obstante, conseguir diseños con prestaciones óptimas puede ser muy difícil utilizando esta metodología, ya que el espacio de diseño (o búsqueda) es enorme (decenas de variables de diseño con cientos de combinaciones diferentes). Aunque el diseñador llegue a una solución que cumpla todas las especificaciones, nunca estará seguro de que el diseño al que ha llegado es el mejor (por ejemplo, el que consuma menos energía). Hoy en día, las técnicas basadas en optimización se están utilizando con el objetivo de ayudar al diseñador a encontrar automáticamente zonas óptimas de diseño. El uso de metodologías basadas en optimización intenta superar las limitaciones de metodologías previas mediante el uso de algoritmos que son capaces de realizar una amplia exploración del espacio de diseño para encontrar diseños de prestaciones óptimas. La filosofía de estas metodologías es que el diseñador elige las especificaciones del circuito, selecciona la topología y ejecuta una optimización que devuelve el valor de cada componente del circuito óptimo (por ejemplo, anchos y longitudes de los transistores) de forma automática. Además, mediante el uso de estos algoritmos, la exploración del espacio de diseño permite estudiar los distintos y complejos compromisos entre prestaciones de los circuitos de RF. Sin embargo, la problemática del diseño de RF es mucho más amplia que la selección del tamaño de cada componente. Con el objetivo de conseguir algo similar a un compilador de silicio para circuitos RF, la metodología desarrollada en la tesis, tiene que ser capaz de asegurar un diseño robusto que permita al diseñador tener éxito frente a medidas experimentales, y, además, las optimizaciones tienen que ser elaboradas en tiempos razonables para que se puedan cumplir las estrictas restricciones time-to-market de las empresas. Para conseguir esto, en esta tesis, hay cuatro aspectos clave que son abordados en la metodología: 1. Los inductores integrados todavía son un cuello de botella en circuitos RF. Los parásitos que aparecen a altas frecuencias hacen que las prestaciones de los inductores sean muy difíciles de modelar. Existe, por tanto, la necesidad de desarrollar nuevos modelos más precisos, pero también muy eficientes computacionalmente que puedan ser incluidos en metodologías que usen algoritmos de optimización. 2. Las variaciones de proceso son fenómenos que afectan mucho las tecnologías nanométricas, así que para obtener un diseño robusto es necesario tener en cuenta estas variaciones durante la optimización. 3. En las metodologías de diseño manual, los parásitos de layout normalmente no se tienen en cuenta en una primera fase de diseño. En ese sentido, cuando el diseñador pasa del diseño topológico al diseño físico, puede que su circuito deje de cumplir con las especificaciones. Estas consideraciones físicas del circuito deben ser tenidas en cuenta en las primeras etapas de diseño. Por lo tanto, con el fin de abordar este problema, la metodología desarrollada tiene que tener en cuenta los parásitos de la realización física desde una primera fase de optimización. 4. Una vez se ha desarrollado la capacidad de generar distintos circuitos RF de forma automática utilizando esta metodología (amplificadores de bajo ruido, osciladores controlados por tensión y mezcladores), en la tesis se aborda también la composición de un sistema RF con una aproximación multinivel, donde el proceso empieza por el diseño de los componentes pasivos y termina componiendo distintos circuitos, construyendo un sistema (por ejemplo, un receptor de radiofrecuencia). La tesis aborda los cuatro problemas descritos anteriormente con éxito, y ha avanzado considerablemente en el estado del arte de metodologías de diseño automáticas/sistemáticas para circuitos RF.Premio Extraordinario de Doctorado U

    An automated design methodology of RF circuits by using Pareto-optimal fronts of EMsimulated inductors

    Get PDF
    A new design methodology for radiofrequency circuits is presented that includes electromagnetic (EM) simulation of the inductors into the optimization flow. This is achieved by previously generating the Pareto-optimal front (POF) of the inductors using EM simulation. Inductors are selected from the Pareto front and their S-parameter matrix is included in the circuit netlist that is simulated using an RF simulator. Generating the EM-simulated POF of inductors is computationally expensive, but once generated, it can be used for any circuit design. The methodology is illustrated both for a singleobjective and a multiobjective optimization of a low noise amplifierMinisterio de Economía y Competitividad TEC2013-45638-C3-3-R, TEC2013-40430-RJunta de Andalucía PIC12-TIC-1481Consejo Superior de Investigaciones Científicas 201350E05

    High-frequency oscillator design for integrated transceivers

    Get PDF

    Derivation of Power System Module Metamodels for Early Shipboard Design Explorations

    Get PDF
    The U.S. Navy is currently challenged to develop new ship designs under compressed schedules. These ship designs must necessarily incorporate emerging technologies for high power energy conversion in order to enable smaller ship designs with a high degree of electrification and next generation electrified weapons. One way this challenge is being addressed is through development of collaborative concurrent design environment that allows for design space exploration across a wide range of implementation options. The most significant challenge is assurance of a dependable power and energy service via the shipboard Integrated Power and Energy System (IPES). The IPES is largely made up of interconnected power conversion and distribution equipment with allocated functionalities in order to meet demanding Quality of Power, Quality of Service and Survivability requirements. Feasible IPES implementations must fit within the ship hull constraints and must not violate limitations on ship displacement. This Thesis applies the theory of dependability to the use of scalable metamodels for power conversion and distribution equipment within a collaborative concurrent design environment to enable total ship set-based design outcomes that result implementable design specifications for procurement of equipment to be used in the final ship implementation

    Derivation of Power System Module Metamodels for Early Shipboard Design Explorations

    Get PDF
    The U.S. Navy is currently challenged to develop new ship designs under compressed schedules. These ship designs must necessarily incorporate emerging technologies for high power energy conversion in order to enable smaller ship designs with a high degree of electrification and next generation electrified weapons. One way this challenge is being addressed is through development of collaborative concurrent design environment that allows for design space exploration across a wide range of implementation options. The most significant challenge is assurance of a dependable power and energy service via the shipboard Integrated Power and Energy System (IPES). The IPES is largely made up of interconnected power conversion and distribution equipment with allocated functionalities in order to meet demanding Quality of Power, Quality of Service and Survivability requirements. Feasible IPES implementations must fit within the ship hull constraints and must not violate limitations on ship displacement. This Thesis applies the theory of dependability to the use of scalable metamodels for power conversion and distribution equipment within a collaborative concurrent design environment to enable total ship set-based design outcomes that result implementable design specifications for procurement of equipment to be used in the final ship implementation

    Expert system based switched mode power supply design

    Get PDF

    Design and analysis of ultra wide band CMOS LNA

    Get PDF
    corecore