179 research outputs found

    Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application

    Get PDF
    AbstractSinkholes represent a natural risk that may hit catastrophically without clearly detectible precursors. However, they are often overlooked by people and administrators. Therefore sinkhole monitoring and associated early warnings constitute important research topics but, currently, only a few papers about sinkhole prediction can be found. In this paper an experience of sinkhole monitoring and early warning with GB-InSAR is described. The latter is a highly precise instrument that is able to produce displacement maps with metric spatial resolution. The described activities were carried out on Elba Island (central Italy), where karstified limestone set off the occurrence of nine sinkholes since 2008, all within less than 3000m2, causing major damage to an important road and many indirect losses. In 1year of monitoring two deforming areas were detected, and the point where a sinkhole was about to propagate to the street level was predicted, thus permitting the preventive closure of the road. The deformation area was larger than the hole generated by the sinkhole, thus showing a subsidence that continued for a prolonged time even after the cavity was filled up. The occurrence of a 1.5-m-wide sinkhole, undetected by the GB-InSAR, also showed the lower detection limit of the instrument

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Development of LiDAR assisted terrestrial radar interferometry for rock deformation monitoring

    Get PDF
    Rock and soil slope movements cost millions of dollars annually. During the past few decades, engineers have relied on traditional methods to detect slope movements. These tools are valuable for small spatial areas but, may not be adequate or cost effective for large spatial areas. Remote sensing methods such as terrestrial laser scanning (TLS) and terrestrial radar interferometry (TRI) provide excellent spatial coverage, and with adequate post-data-processing software, sub-millimetric scale deformation sensitivity can be achieved. This work will present a comparative experimental study between TLS and TRI. The comparative experimental study will allow us to achieve the two main objectives of this research: 1. The development of a methodology to correct repositioning errors of the TRI during discontinuous measurement campaigns. 2. The development of a methodology to use TLS as an independent measurement device to constrain the results of the TRI when rock displacements exceed multiple wavelengths of the instrument or displacements exceed one quarter of the wavelength of the instrument. Results from the measurement campaigns show that sub-millimetric displacements can be detected with both TLS and TRI systems. Furthermore, TLS systems are widely available, cheaper, lighter, and easier to operate than TRI systems. Data can also be reduced faster, and the results more easily interpreted than with TRI systems. These advantages make TLS systems ideal for rock slope evaluation for highway projects, especially when time, cost, and public opinion are major concerns for the state\u27s Department of Transportation --Abstract, page iv

    GPS and PSI integration for monitoring urban land motion

    Get PDF
    Urban ground motion due to natural or man-made geological processes is an issue of major importance for local authorities, property developers, planners and buyers. Increased knowledge of this phenomena would benefit all involved but the measurement techniques in common use have either spatial or temporal inadequacies. A technique known as Persistent Scatterer Interferometry (PSI) has been developed which can map ground motion to high precision over large areas with a temporal scale measured in years. PSI takes advantage of the high number of Synthetic Aperture Radar (SAR) images available to mitigate the atmospheric effects that inhibit standard Interferometric SAR (InSAR) techniques. This however involves assumptions about the nature of atmospheric variability, such as its randomness over time, or its spatial extent. In addition, little is known about the Persistent Scatterers (PS) themselves and PSI is only able to provide results relative to a reference PS. The reference PS point is often arbitrarily chosen and may itself be in an area undergoing ground motion, thus adding a degree of ambiguity to any relatively derived motion. The purpose of this work is to investigate possible solutions to these shortfalls and quantify any improvements made. A corner reflector network is established in the Nottingham area of the UK. A data archive is collated over three years containing Global Positioning System (GPS) data at the corner reflector sites, data from surrounding Continuous GPS (CGPS) sites and levelling data. Due to conflicts with the European Space Agency (ESA) Environmental Satellite (ENVISAT), there were insufficient SAR images to com- pute a fully integrated corner reflector PSI study. Instead, the project focussed on atmospheric correction of PSI results using absolute ZWD estimates. Zenith Wet Delay (ZWD) estimates are derived from a Precise Point Positioning (PPP) GPS processing method which does not rely on a network of ground stations and therefore produces absolute ZWD estimates which are less prone to biases and noise. These are interpolated across a PSI study area and used to mitigate the long wavelength effects of atmopheric water vapour in the PSI differential interferograms. The corrected PSI results are then compared to uncorrected results, GPS derived motion and levelling data. Results between the ZWD corrected PSI study and the uncorrected study show statistical improvements in some areas and reductions in others. Correlation factors between double-differenced levelling observations and double-differenced PSI results improve from 0.67 to 0.81. PSI deformation rates also show improvement when compared to GPS deformation rates, although some results do not satisfy statistical tests

    Synthetic Aperture Radar für Monitoring in städtischen Gebieten und im Bergbau

    Get PDF
    Considering it is hazardous to the environment and people, monitoring land movements at urban area become more and more significant. On the other hand, studying of land movements in non-urban area is also important. Synthetic aperture radar using interferometric technique, which is known as InSAR, is capable of providing a quite denser measurement over large areas. More specifically, Interferometric SAR (InSAR), Differential InSAR (DInSAR), Persistent Scatterers InSAR (PSI) techniques are developing to meet people¡¯s requirements of detecting land movements. Due to the different features of urban and non-urban area, the application of InSAR for land movements monitoring may come cross different challenges. D¨¹sseldorf was used as the urban test site by processing 20 TerraSAR-X images using PSI. Levelling results provided by the State Capital of D¨¹sseldorf validated the PSInSAR result, when two time series showed similar progress with very few discrepancies. Xishan mining region was chosen as the non-urban test site in this project, because of clear advantages. Such as well served mining schedule and literature and rapid movements with big phase gradients. In the experiments carried out in Xishan mine, InSAR fulfilled the aim of mining parameters derivation. GPS surveying was collated for the coordinates of corner reflectors, which can validate and improve the accuracy of geocoding (better than 5 m).Die Überwachung von Setzungen in städtischen Gebieten wird immer wichtiger, da es sich um eine potenzielle Bedrohung für die Umwelt und den Menschen handelt. Die Untersuchung von Landsenkungen in nicht-städtischen Bereichen sind ebenfalls sehr wichtig. Mit interferometrischen Auswertungen von Synthetic Aperture Radar Messungen (InSAR) ist man in der Lage große Bereiche hochauflösend zu beobachten. SAR Systeme können während des Tages, der Nacht und unter allen Wetterbedingungen arbeiten. Heutzutage gibt es zunehmendes Interesse an der Anwendung von SAR für das Monitoring von Veränderungen der Erdoberfläche. Hierzu wurden speziell die Techniken des Interferometrischen SAR (InSAR), Differential InSAR (DInSAR) und Persistent Scatterers InSAR (PSI) entwickelt. Aufgrund der unterschiedlichen Merkmale von urbanen und nichturbanen Gebieten, kann die Anwendung von InSAR für das Monitoring von Bewegungen unterschiedliche Herausforderungen stellen. Die Stadt Düsseldorf wurde als Testfeld für die Verarbeitung von 20 TerraSAR-X Bilder mit PSI ausgewählt. Die Ergebnisse aus dem Nivellement der Landeshauptstadt Düsseldorf wurden für die Validierung der PSInSAR Ergebnisse genutzt. Zwei Zeitreihen zeigen einen ähnlichen Verlauf mit sehr geringen Abweichungen. Die Bergbauregion Xishan wurde als nichturbanes Testgebiete in diesem Projekt ausgewählt, weil es die Möglichkeit bietet an Informationen über den Bergbau, die Zeitpläne und Literatur zu kommen und es dort schnelle Oberflächenbewegungen mit großen Phasengradienten gibt. Die durchgeführten Experimente im Xishan Gebiet zeigen, dass man mit der InSAR Auswertung auch Bergbauparameter ableiten kann. Für die Koordinatenbestimmung der Corner Reflektoren wurden GPS Messungen durchgeführt, die auch zur Verbesserung der Satellitenbasislinien dienen und die Genauigkeit der Geokodierung (kleiner 5 m) verbessern

    Characterizing slope instability kinematics by integrating multi-sensor satellite remote sensing observations

    Get PDF
    Over the past few decades, the occurrence and intensity of geological hazards, such as landslides, have substantially risen due to various factors, including global climate change, seismic events, rapid urbanization and other anthropogenic activities. Landslide disasters pose a significant risk in both urban and rural areas, resulting in fatalities, infrastructure damages, and economic losses. Nevertheless, conventional ground-based monitoring techniques are often costly, time-consuming, and require considerable resources. Moreover, some landslide incidents occur in remote or hazardous locations, making ground-based observation and field investigation challenging or even impossible. Fortunately, the advancements in spaceborne remote sensing technology have led to the availability of large-scale and high-quality imagery, which can be utilized for various landslide-related applications, including identification, monitoring, analysis, and prediction. This efficient and cost-effective technology allows for remote monitoring and assessment of landslide risks and can significantly contribute to disaster management and mitigation efforts. Consequently, spaceborne remote sensing techniques have become vital for geohazard management in many countries, benefiting society by providing reliable downstream services. However, substantial effort is required to ensure that such benefits are provided. For establishing long-term data archives and reliable analyses, it is essential to maintain consistent and continued use of multi-sensor spaceborne remote sensing techniques. This will enable a more thorough understanding of the physical mechanisms responsible for slope instabilities, leading to better decision-making and development of effective mitigation strategies. Ultimately, this can reduce the impact of landslide hazards on the general public. The present dissertation contributes to this effort from the following perspectives: 1. To obtain a comprehensive understanding of spaceborne remote sensing techniques for landslide monitoring, we integrated multi-sensor methods to monitor the entire life cycle of landslide dynamics. We aimed to comprehend the landslide evolution under complex cascading events by utilizing various spaceborne remote sensing techniques, e.g., the precursory deformation before catastrophic failure, co-failure procedures, and post-failure evolution of slope instability. 2. To address the discrepancies between spaceborne optical and radar imagery, we present a methodology that models four-dimensional (4D) post-failure landslide kinematics using a decaying mathematical model. This approach enables us to represent the stress relaxation for the landslide body dynamics after failure. By employing this methodology, we can overcome the weaknesses of the individual sensor in spaceborne optical and radar imaging. 3. We assessed the effectiveness of a newly designed small dihedral corner reflector for landslide monitoring. The reflector is compatible with both ascending and descending satellite orbits, while it is also suitable for applications with both high-resolution and medium-resolution satellite imagery. Furthermore, although its echoes are not as strong as those of conventional reflectors, the cost of the newly designed reflectors is reduced, with more manageable installation and maintenance. To overcome this limitation, we propose a specific selection strategy based on a probability model to identify the reflectors in satellite images

    Deformation measurement and monitoring with Ground-Based SAR

    Get PDF
    The Ground-Based Synthetic Aperture Radar (GB-SAR) is a relatively new technique, which in the last ten years has gained interest as deformation measurement and monitoring tool. The GB-SAR technique is based on an imaging radar-based sensor, which o ers high sensitivity to small displacements, in the region of sub-millimetres to millimetres, long-range measurements, which can work up to some kilometres, and massive deformation measurement capability. These features confer to the GB-SAR technique interesting advantages with respect to other point-wise deformation measurement techniques. The process of estimating deformation from the GB-SAR data is not straightforward: it requires complex data processing and analysis tools. This dissertation is focused on these tools, covering the whole deformation estimation process. This thesis collects the main research results achieved on this topic during my work at the Active Remote Sensing Unit of the Institute of Geomatics. Two di erent approaches for measuring deformation with GB-SAR data are described and discussed. The irst one is the interferometric approach, based on the exploitation of the phase component of the GB-SAR data, which is the commonly used GB-SAR method. The second one is a non-interferometric approach, which exploits the amplitude component of the GB-SAR data, o ering an interesting alternative way to exploit the GB-SAR data. This dissertation has two main objectives. The first one is presenting, step by step, a complete interferometric GB-SAR procedure for deformation measuring and monitoring. The second one is presenting two new algorithms, which represent the most innovative part of this thesis. The first algorithm faces the phase unwrapping problem, providing an automatic solution for detecting and correcting unwrapping errors, which is called 2+1D phase unwrapping. The second algorithm is the base of the above mentioned non- interferometric approach, which overcomes some of the most critical limitation of GB-SAR interferometry, at the expense of getting less precise deformation estimates. The dissertation is divided in 6 chapters. The first one is the introduction, while the second one provides an overview of GB-SAR interferometry, introducing the main aspects that are the basics of the subsequent chapters. Chapter 3 describes a complete GB-SAR processing chain. Chapters 4 and 5 contain the most original part of the dissertation, i.e. the 2D+1 phase unwrapping algorithm, and the non-interferometric approach. Finally, in Chapter 6 the conclusions are discussed and further research is proposed.El radar terrestre d’obertura sintètica (GB-SAR) és una tècnica relativament nova que, en els últims deu anys, ha guanyat interès com a eina per a mesurar i monitorar deformacions. La tècnica GB-SAR es basa en un sistema radar amb capacitat per proporcionar imatges, que ofereix una alta sensibilitat a petits desplaçaments, d’ordre mil·limètric o submil·limètric, que és capaç de mesurar a llargues distàncies (alguns km) i que té una alta capacitat per fer mesures massives. Aquestes característiques donen a la tècnica interessants avantatges respecte a altres tècniques clàssiques de mesura de deformacions, típicament basades en mesures puntuals. Derivar mesures de deformació a partir de dades GB-SAR no és un procés senzill, ja que requereix uns procediments complexos de processat i anàlisi de dades. Aquesta tesi es centra en aquests processos. Aquesta tesi recull alguns dels resultats més destacats de la investigació que he desenvolupat sobre aquest tema a la unitat de Teledetecció Activa de l'Institut de Geomàtica. Al llarg del document es descriuen dues aproximacions diferents per mesurar deformacions amb GB-SAR. Una es basa en la explotació de la tècnica de la interferometria, és a dir explotant la component de la fase de les imatges GB-SAR: és la tècnica GB-SAR usada habitualment. La segona, anomenada tècnica no-interferomètrica, es basa en la component de l’amplitud de les dades GB-SAR i ofereix una interessant alternativa a la primera. La tesi acompleix dos objectius principals. En primer lloc presenta un procediment complet per la mesura i monitoratge de deformacions mitjançant interferometria GB-SAR. En segon lloc, descriu dos nous algorismes que resolen problemes específics de la interferometria clàssica aplicada al GB-SAR i que representen la part més innovadora d’aquesta tesi. El primer algorisme aborda un dels problemes oberts de la interferometria, el phase unwrapping, proposant un mètode automàtic per detectar-ne i corregir-ne els errors. El segon algorisme proposa un nou mètode per a l'explotació de les dades GB-SAR per mesurar deformacions sense utilitzar la interferometria. La estructura de la tesi consisteix en sis capítols. Després de la introducció, el Capítol 2 proporciona una visió general de la interferometria GB-SAR, introduint els conceptes principals utilitzats en la tesi. En el tercer capítol es descriu una cadena de processament basada en GB-SAR interferomètric. Els capítols quart i cinquè contenen la part més original de la tesi: l'algorisme de phase unwrapping i el mètode no-interferomètric per la mesura de deformacions. Finalment, es discuteixen les conclusions principals i es proposen futures línies d’investigació

    Advanced Ground-Based Real and Synthetic Aperture Radar

    Get PDF
    Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this work, concerns design and development of some advanced GBRI systems. These systems are related to the following issue: detection of displacement vector, Multiple Input Multiple Output (MIMO) and radars with 3D capability

    Genesis, conservation and deformation of ice-rich mountain permafrost:: Driving factors, mapping and geodetic monitoring

    Get PDF
    This thesis analyses ice-rich mountain permafrost with regard to its genesis, distribution, deformation and interaction with other environmental factors. The processes influencing ground ice formation in ice-rich and ice-poor mountain permafrost are highlighted. Factors influencing the presence of ice-rich permafrost are identified and their individual or combined effect on frozen ground is determined. Based on these findings, a new permafrost distribution map of Switzerland was created, which specifies permafrost temperature and ice contents and considers rock glacier creep paths. The deformation of rock glaciers is investigated with newly developed monitoring systems and concepts. This enables a better understanding of the processes leading to rock glacier acceleration at different time scales
    corecore