170 research outputs found

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Ten Commandments Revisited: A Ten-Year Perspective on the Industrial Application of Formal Methods

    Get PDF
    Ten years ago, our 1995 paper Ten Commandments of Formal Methods suggested some guidelines to help ensure the success of a formal methods project. It proposed ten important requirements (or "commandments") for formal developers to consider and follow, based on our knowledge of several industrial application success stories, most of which have been reported in more detail in two books. The paper was surprisingly popular, is still widely referenced, and used as required reading in a number of formal methods courses. However, not all have agreed with some of our commandments, feeling that they may not be valid in the long-term. We re-examine the original commandments ten years on, and consider their validity in the light of a further decade of industrial best practice and experiences

    Foundations of the B method

    Get PDF
    B is a method for specifying, designing and coding software systems. It is based on Zermelo-Fraenkel set theory with the axiom of choice, the concept of generalized substitution and on structuring mechanisms (machine, refinement, implementation). The concept of refinement is the key notion for developing B models of (software) systems in an incremental way. B models are accompanied by mathematical proofs that justify them. Proofs of B models convince the user (designer or specifier) that the (software) system is effectively correct. We provide a survey of the underlying logic of the B method and the semantic concepts related to the B method; we detail the B development process partially supported by the mechanical engine of the prover

    An Operator-based Approach to Incremental Development of Conform Protocol State Machines

    Get PDF
    http://drops.dagstuhl.de/opus/volltexte/2006/695/ ISBN : 978-3-939897-02-6International audienceAn incremental development framework which supports a conform construction of Protocol State Machines (PSMs) is presented. We capture design concepts and strategies of PSM construction by sequentially applying some development operators: each operator makes evolve the current PSM to another one. To ensure a conform construction, we introduce three conformance relations, inspired by the specification refinement and specification matchings supported by formal methods. Conformance relations preserve some global behavioral properties. Our purpose is illustrated by some development steps of the card service interface of an electronic purse: for each step, we introduce the idea of the development, we propose an operator and we give the new specification state obtained by the application of this operator and the property of this state relatively to the previous one in terms of conformance relation

    Component-based Development using the B method

    Get PDF
    Research reportIn component-based software development approaches, components are considered as black boxes. Components communicate through required and provided interfaces which describe their visible behaviors. In the best cases, the provided interfaces are checked compatible with the corresponding required interfaces, but in general cases, adapters have to be introduced to connect them. Compatibility between required and provided interfaces concerns the interface signatures, behavioral aspects and protocol level. We propose to specify component interfaces in B in order to verify these three levels of interoperability. The use of B assembling and refinement mechanisms eases the verification of the interoperability between interfaces and the correctness of the component assembly. The verification is done by the B prover

    Formal Methods: From Academia to Industrial Practice. A Travel Guide

    Full text link
    For many decades, formal methods are considered to be the way forward to help the software industry to make more reliable and trustworthy software. However, despite this strong belief and many individual success stories, no real change in industrial software development seems to be occurring. In fact, the software industry itself is moving forward rapidly, and the gap between what formal methods can achieve and the daily software-development practice does not appear to be getting smaller (and might even be growing). In the past, many recommendations have already been made on how to develop formal-methods research in order to close this gap. This paper investigates why the gap nevertheless still exists and provides its own recommendations on what can be done by the formal-methods-research community to bridge it. Our recommendations do not focus on open research questions. In fact, formal-methods tools and techniques are already of high quality and can address many non-trivial problems; we do give some technical recommendations on how tools and techniques can be made more accessible. To a greater extent, we focus on the human aspect: how to achieve impact, how to change the way of thinking of the various stakeholders about this issue, and in particular, as a research community, how to alter our behaviour, and instead of competing, collaborate to address this issue.Comment: 22 pages, 0 figure

    Is CADP an Applicable Formal Method?

    Get PDF
    International audienceCADP is a comprehensive toolbox implementing results of concurrency theory. This paper addresses the question, whether CADP qualifies as an applicable formal method, based on the experience of the authors and feedback reported by users

    Trustworthy Assembly of Components using B Refinement

    Get PDF
    International audienceIn component-based software development approaches, components are considered as black boxes, communicating through required and provided interfaces which describe their visible behaviors. In the best cases, the provided interfaces are checked to be compatible with the corresponding required interfaces, but in general, adapters have to be introduced to connect them. We propose to exploit existing notations and languages with their associated tools to specify working systems out of components: UML composite structure diagrams to express the architecture in terms of components and their interfaces, class diagrams, sequence diagrams and protocol state machines to describe the behavior of each component. Component interfaces will then be expressed in B in order to verify the interoperability. The use of B assembling and refinement mechanisms eases the verification of the interoperability between interfaces and the correctness of the component assembly
    • …
    corecore