312,216 research outputs found

    Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    Get PDF
    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication

    Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    Get PDF
    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated

    Execution environment for intelligent real-time control systems

    Get PDF
    Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment

    dWatch: a Personal Wrist Watch for Smart Environments

    Get PDF
    Intelligent environments, such as smart homes or domotic systems, have the potential to support people in many of their ordinary activities, by allowing complex control strategies for managing various capabilities of a house or a building: lights, doors, temperature, power and energy, music, etc. Such environments, typically, provide these control strategies by means of computers, touch screen panels, mobile phones, tablets, or In-House Displays. An unobtrusive and typically wearable device, like a bracelet or a wrist watch, that lets users perform various operations in their homes and to receive notifications from the environment, could strenghten the interaction with such systems, in particular for those people not accustomed to computer systems (e.g., elderly) or in contexts where they are not in front of a screen. Moreover, such wearable devices reduce the technological gap introduced in the environment by home automation systems, thus permitting a higher level of acceptance in the daily activities and improving the interaction between the environment and its inhabitants. In this paper, we introduce the dWatch, an off-the-shelf personal wearable notification and control device, integrated in an intelligent platform for domotic systems, designed to optimize the way people use the environment, and built as a wrist watch so that it is easily accessible, worn by people on a regular basis and unobtrusiv

    Overview of Some Intelligent Control Structures and Dedicated Algorithms

    Get PDF
    Automatic control refers to the use of a control device to make the controlled object automatically run or keep the state unchanged without the participation of people. The guiding ideology of intelligent control is based on people’s way of thinking and ability to solve problems, in order to solve the current methods that require human intelligence. We already know that the complexity of the controlled object includes model uncertainty, high nonlinearity, distributed sensors/actuators, dynamic mutations, multiple time scales, complex information patterns, big data process, and strict characteristic indicators, etc. In addition, the complexity of the environment manifests itself in uncertainty and uncertainty of change. Based on this, various researches continue to suggest that the main methods of intelligent control can include expert control, fuzzy control, neural network control, hierarchical intelligent control, anthropomorphic intelligent control, integrated intelligent control, combined intelligent control, chaos control, wavelet theory, etc. However, it is difficult to want all the intelligent control methods in a chapter, so this chapter focuses on intelligent control based on fuzzy logic, intelligent control based on neural network, expert control and human-like intelligent control, and hierarchical intelligent control and learning control, and provide relevant and useful programming for readers to practice

    Customising with 3D printing: The role of intelligent control

    Get PDF
    © 2018 Elsevier B.V. The emergence of direct digital manufacturing creates new opportunities for the production of highly customised goods especially when it is combined with conventional manufacturing methods. Nevertheless, this combination creates a need for systems that can effectively manage and control the resulting distributed manufacturing process. In this paper, we explore three different configurations that can enable direct digital manufacturing for customisation, ranging from fully integrated to inter-organisational set up. Additionally, control requirements of such systems are developed and the suitability of intelligent control is explored. By ‘intelligent control’ we mean production control that is capable of assessing and interacting with the production environment and adapting production accordingly. We argue that the so called intelligent product paradigm provides a suitable mechanism for the development of such intelligent control systems. In this approach, the intelligent product directly co-ordinates with design agent, 3D printing agents and other conventional manufacturing system agents to schedule, assign and execute tasks independently. Via a case example of a realistic production system, we propose and implement such an intelligent control system and we analyse its feasibility in supporting 3D printing enabled customisation

    An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    Get PDF
    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented

    Multi-Agent System Interaction in Integrated SCM\ud

    Get PDF
    Coordination between organizations on strategic, tactical and operation levels leads to more effective and efficient supply chains. Supply chain management is increasing day by day in modern enterprises.. The environment is becoming competitive and many enterprises will find it difficult to survive if they do not make their sourcing, production and distribution more efficient. Multi-agent supply chain management has recognized as an effective methodology for supply chain management. Multi-agent systems (MAS) offer new methods compared to conventional, centrally organized architectures in the scope of supply chain management (SCM). Since necessary data are not available within the whole supply chain, an integrated approach for production planning and control taking into account all the partners involved is not feasible. In this study we show how MAS architecture interacts in the integrated SCM architecture with the help of various intelligent agents to highlight the above problem

    Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments

    Get PDF
    Intelligent management of energy consumption is one of the key issues for future energy distribution systems, smart buildings, and consumer appliances. The problem can be tackled both from the point of view of the utility provider, with the intelligence embedded in the smart grid, or from the point of view of the consumer, thanks to suitable local energy management systems (EMS). Conserving energy, however, should respect the user requirements regarding the desired state of the environment, therefore an EMS should constantly and intelligently find the balance between user requirements and energy saving. The paper proposes a solution to this problem, based on explicit high-level modeling of user intentions and automatic control of device states through the solution and optimization of a constrained Boolean satisfiability problem. The proposed approach has been integrated into a smart environment framework, and promising preliminary results are reporte

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted
    corecore