58 research outputs found

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    Logic Synthesis for Established and Emerging Computing

    Get PDF
    Logic synthesis is an enabling technology to realize integrated computing systems, and it entails solving computationally intractable problems through a plurality of heuristic techniques. A recent push toward further formalization of synthesis problems has shown to be very useful toward both attempting to solve some logic problems exactly--which is computationally possible for instances of limited size today--as well as creating new and more powerful heuristics based on problem decomposition. Moreover, technological advances including nanodevices, optical computing, and quantum and quantum cellular computing require new and specific synthesis flows to assess feasibility and scalability. This review highlights recent progress in logic synthesis and optimization, describing models, data structures, and algorithms, with specific emphasis on both design quality and emerging technologies. Example applications and results of novel techniques to established and emerging technologies are reported

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    Subtyping with Generics: A Unified Approach

    Get PDF
    Reusable software increases programmers\u27 productivity and reduces repetitive code and software bugs. Variance is a key programming language mechanism for writing reusable software. Variance is concerned with the interplay of parametric polymorphism (i.e., templates, generics) and subtype (inclusion) polymorphism. Parametric polymorphism enables programmers to write abstract types and is known to enhance the readability, maintainability, and reliability of programs. Subtyping promotes software reuse by allowing code to be applied to a larger set of terms. Integrating parametric and subtype polymorphism while maintaining type safety is a difficult problem. Existing variance mechanisms enable greater subtyping between parametric types, but they suffer from severe deficiencies. They are unable to express several common type abstractions. They can cause a proliferation of types and redundant code. They are difficult for programmers to use due to its inherent complexity. This dissertation aims to improve variance mechanisms in programming languages supporting parametric polymorphism. To address the shortcomings of current mechanisms, I will combine two popular approaches, definition-site variance and use-site variance, in a single programming language. I have developed formal languages or calculi for reasoning about variance. The calculi are example languages supporting both notions of definition-site and use-site variance. They enable stating precise properties that can be proved rigorously. The VarLang calculus demonstrates fundamental issues in variance from a language neutral perspective. The VarJ calculus illustrates realistic complications by modeling a mainstream programming language, Java. VarJ not only supports both notions of use-site and definition-site variance but also language features with complex interactions with variance such as F-bounded polymorphism and wildcard capture. A mapping from Java to VarLang was implemented in software that infers definition-site variance for Java. Large, standard Java libraries (e.g. Oracle\u27s JDK 1.6) were analyzed using the software to compute metrics measuring the benefits of adding definition-site variance to Java, which only supports use-site variance. Applying this technique to six Java generic libraries shows that 21-47% (depending on the library) of generic definitions are inferred to have single-variance; 7-29% of method signatures can be relaxed through this inference, and up to 100% of existing wildcard annotations are unnecessary and can be elided. Although the VarJ calculus proposes how to extend Java with definition-site variance, no mainstream language currently supports both definition-site and use-site variance. To assist programmers with utilizing both notions with existing technology, I developed a refactoring tool that refactors Java code by inferring definition-site variance and adding wildcard annotations. This tool is practical and immediately applicable: It assumes no changes to the Java type system, while taking into account all its intricacies. This system allows users to select declarations (variables, method parameters, return types, etc.) to generalize and considers declarations not declared in available source code. I evaluated our technique on six Java generic libraries. I found that 34% of available declarations of variant type signatures can be generalized-i.e., relaxed with more general wildcard types. On average, 146 other declarations need to be updated when a declaration is generalized, showing that this refactoring would be too tedious and error-prone to perform manually. The result of applying this refactoring is a more general interface that supports greater software reuse

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio

    Majority-Inverter Graph: A New Paradigm for Logic Optimization

    Get PDF
    In this paper, we propose a paradigm shift in representing and optimizing logic by using only majority (MAJ) and inversion (INV) functions as basic operations. We represent logic functions by Majority-Inverter Graph (MIG): a directed acyclic graph consisting of three-input majority nodes and regular/complemented edges. We optimize MIGs via a new Boolean algebra, based exclusively on majority and inversion operations, that we formally axiomatize in this work. As a complement to MIG algebraic optimization, we develop powerful Boolean methods exploiting global properties of MIGs, such as bit-error masking. MIG algebraic and Boolean methods together attain very high optimization quality. Considering the set of IWLS’05 benchmarks, our MIG optimizer (MIGhty) enables a 7% depth reduction in LUT-6 circuits mapped by ABC while also reducing size and power activity, with respect to similar AIG optimization. Focusing on arithmetic intensive benchmarks instead, MIGhty enables a 16% depth reduction in LUT-6 circuits mapped by ABC, again with respect to similar AIG optimization. Employed as front-end to a delay-critical 22-nm ASIC flow (logic synthesis + physical design) MIGhty reduces the average delay/area/power by 13%/4%/3%, respectively, over 31 academic and industrial benchmarks. We also demonstrate delay/area/power improve- ments by 10%/10%/5% for a commercial FPGA flow
    • …
    corecore