1,440 research outputs found

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Considering Transmission Impairments in Wavelength Routed Networks

    Get PDF
    Abstract — We consider dynamically reconfigurable wavelength routed networks in which lightpaths carrying IP traffic are on demand established. We face the Routing and Wavelength Assignment problem considering as constraints the physical impairments that arise in all-optical wavelength routed networks. In particular, we study the impact of the physical layer when establishing a lightpath in transparent optical network. Because no signal transformation and regeneration at intermediate nodes occurs, noise and signal distortions due to non-ideal transmission devices are accumulated along the physical path, and they degrade the quality of the received signal. We propose a simple yet accurate model for the physical layer which consider both static and dynamic impairments, i.e., nonlinear effects depending on the actual wavelength/lightpath allocation. We then propose a novel algorithm to solve the RWA problem that explicitly considers the physical impairments. Simulation results show the effectiveness of our approach. Indeed, when the transmission impairments come into play, an accurate selection of paths and wavelengths which is driven by physical consideration is mandatory. I

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Dynamic grooming in IP over WDM networks: A study with realistic traffic based on GANCLES simulation package

    Get PDF
    Abstract — Dynamic grooming capabilities lies at the hearth of many envisaged scenarios for IP over Optical networks, but studies on its performance are still in their infancy. This work addresses two fundamental aspects of the problem. First of all it presents a novel tool for the study of IP over Optical networks. The tool, freely available on-line, is a network level simulator named GANCLES that includes several innovative features allowing the study of realistic scenarios in IP over Optical networking, making it an ideal tool for Traffic Engineering purposes. GANCLES architecture enables the simulation of dynamic traffic grooming on top of a realistic network model that correctly describes the logical interaction between the optical and the IP layer, i.e., the mutual relationship between routing algorithms and lightpath assignment procedures at the optical layer and routing at th

    Survivable MPLS Over Optical Transport Networks: Cost and Resource Usage Analysis

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks (OTN) in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the offered traffic granularity and the physical network structure on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. On the other hand, sparse networks of low connectivity parameter use more wavelengths for optical path routing and increase the configuration cost, as compared with dense networks. We demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with different cost variations, and were obtained for networks targeted to a nationwide coverage

    Energy Aware Scheduling and Routing of Periodic Lightpath Demands in Optical Grid Networks

    Get PDF
    AbstractOptical grid networks provide an ideal infrastructure to support large-scale data intensive applications and interconnection of data centers. The power consumption of communications equipment for such networks has been increasing steadily over the past decade and energy efficient routing schemes and traffic models can be utilized to reduce the energy consumption. In many applications it is possible to select the destination node from a set of possible destinations, which have the required computing/storage resources. This is known as anycasting. We propose a novel formulation that exploits knowledge of demand holding times and the flexibility of anycast routing to optimally schedule demands (in time) and route them in order to minimize overall network energy consumption. Our simulation results demonstrate that the proposed approach can lead to significant reductions in energy consumption, compared to traditional routing schemes
    • 

    corecore