750 research outputs found

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    230501

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is a paradigmatic example of a Cooperative Cyber-Physical System (Co-CPS), which holds the potential to vastly improve road safety by partially removing humans from the driving task. However, the challenges are substantial, as the domain involves several topics, such as control theory, communications, vehicle dynamics, security, and traffic engineering, that must be coupled to describe, develop and validate these systems of systems accurately. This work presents a comprehensive survey of significant and recent advances in Co-VP relevant fields. We start by overviewing the work on control strategies and underlying communication infrastructures, focusing on their interplay. We also address a fundamental concern by presenting a cyber-security overview regarding these systems. Furthermore, we present and compare the primary initiatives to test and validate those systems, including simulation tools, hardware-in-the-loop setups, and vehicular testbeds. Finally, we highlight a few open challenges in the Co-VP domain. This work aims to provide a fundamental overview of highly relevant works on Co-VP topics, particularly by exposing their inter-dependencies, facilitating a guide that will support further developments in this challenging field.info:eu-repo/semantics/publishedVersio

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving
    • …
    corecore