20,552 research outputs found

    A gap analysis of Internet-of-Things platforms

    Full text link
    We are experiencing an abundance of Internet-of-Things (IoT) middleware solutions that provide connectivity for sensors and actuators to the Internet. To gain a widespread adoption, these middleware solutions, referred to as platforms, have to meet the expectations of different players in the IoT ecosystem, including device providers, application developers, and end-users, among others. In this article, we evaluate a representative sample of these platforms, both proprietary and open-source, on the basis of their ability to meet the expectations of different IoT users. The evaluation is thus more focused on how ready and usable these platforms are for IoT ecosystem players, rather than on the peculiarities of the underlying technological layers. The evaluation is carried out as a gap analysis of the current IoT landscape with respect to (i) the support for heterogeneous sensing and actuating technologies, (ii) the data ownership and its implications for security and privacy, (iii) data processing and data sharing capabilities, (iv) the support offered to application developers, (v) the completeness of an IoT ecosystem, and (vi) the availability of dedicated IoT marketplaces. The gap analysis aims to highlight the deficiencies of today's solutions to improve their integration to tomorrow's ecosystems. In order to strengthen the finding of our analysis, we conducted a survey among the partners of the Finnish IoT program, counting over 350 experts, to evaluate the most critical issues for the development of future IoT platforms. Based on the results of our analysis and our survey, we conclude this article with a list of recommendations for extending these IoT platforms in order to fill in the gaps.Comment: 15 pages, 4 figures, 3 tables, Accepted for publication in Computer Communications, special issue on the Internet of Things: Research challenges and solution

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Business models for deployment and operation of femtocell networks; - Are new cooperation strategies needed for mobile operators?

    Get PDF
    In this paper we discuss different business models for deployment and operation of femtocell networks intended for provisioning of public mobile broad band access services. In these types of business cases the operators use femtocells in order to reduce investments in "more costly" macro networks since the traffic can be "offloaded" to "less costly" femtocell networks. This is in contrast to the many business cases presented in Femtoforum where femtocells mainly are discussed as a solution to improve indoor coverage for voice services in homes and small offices, usually for closed user groups The main question discussed in this paper is if "operators need to consider new forms of cooperation strategies in order to enable large scale deployment of femtocells for public access?" By looking into existing solutions for indoor wireless access services we claim that the answer is both "Yes" and "No". No, since many types of cooperation are already in place for indoor deployment. Yes, because mobile operators need to re-think the femtocell specific business models, from approaches based on singe operator networks to different forms of cooperation involving multi-operator solutions, e.g. roaming and network sharing. --

    On M2M Micropayments : A Case Study of Electric Autonomous Vehicles

    Get PDF
    The proliferation of electric vehicles has spurred the research interest in technologies associated with it, for instance, batteries, and charging mechanisms. Moreover, the recent advancements in autonomous cars also encourage the enabling technologies to integrate and provide holistic applications. To this end, one key requirement for electric vehicles is to have an efficient, secure, and scalable infrastructure and framework for charging, billing, and auditing. However, the current manual charging systems for EVs may not be applicable to the autonomous cars that demand new, automatic, secure, efficient, and scalable billing and auditing mechanism. Owing to the distributed systems such as blockchain technology, in this paper, we propose a new charging and billing mechanism for electric vehicles that charge their batteries in a charging-on-the-move fashion. To meet the requirements of billing in electric vehicles, we leverage distributed ledger technology (DLT), a distributed peer-to-peer technology for micro-transactions. Our proof-of-concept implementation of the billing framework demonstrates the feasibility of such system in electric vehicles. It is also worth noting that the solution can easily be extended to the electric autonomous cars (EACs)

    Costs and benefits of superfast broadband in the UK

    Get PDF
    This paper was commissioned from LSE Enterprise by Convergys Smart Revenue Solutions to stimulate an open and constructive debate among the main stakeholders about the balance between the costs, the revenues, and the societal benefits of ‘superfast’ broadband. The intent has been to analyse the available facts and to propose wider perspectives on economic and social interactions. The paper has two parts: one concentrates on superfast broadband deployment and the associated economic and social implications (for the UK and its service providers), and the other considers alternative social science approaches to these implications. Both parts consider the potential contribution of smart solutions to superfast broadband provision and use. Whereas Part I takes the “national perspective” and the “service provider perspective”, which deal with the implications of superfast broadband for the UK and for service providers, Part II views matters in other ways, particularly by looking at how to realise values beyond the market economy, such as those inherent in neighbourliness, trust and democrac
    • 

    corecore