80 research outputs found

    Achieving manufacturing excellence through the integration of enterprise systems and simulation

    Get PDF
    This paper discusses the significance of the enterprise systems and simulation integration in improving shop floor’s short-term production planning capability. The ultimate objectives are to identify the integration protocols, optimisation parameters and critical design artefacts, thereby identifying key ‘ingredients’ that help in setting out a future research agenda in pursuit of optimum decision-making at the shop floor level. While the integration of enterprise systems and simulation gains a widespread agreement within the existing work, the optimality, scalability and flexibility of the schedules remained unanswered. Furthermore, there seems to be no commonality or pattern as to how many core modules are required to enable such a flexible and scalable integration. Nevertheless, the objective of such integration remains clear, i.e. to achieve an optimum total production time, lead time, cycle time, production release rates and cost. The issues presently faced by existing enterprise systems (ES), if properly addressed, can contribute to the achievement of manufacturing excellence and can help identify the building blocks for the software architectural platform enabling the integration

    Innovation ecosystems for industry 4.0 : a collaborative perspective for the provision of digital technologies and platforms

    Get PDF
    Industry 4.0 considers complex interrelated IoT-based technologies for the provision of digital solutions. This complexity demands a vast set of capabilities that are hard to be found in a single technology provider, especially in small and medium-sized enterprises (SMEs). Innovation ecosystems allow SMEs to integrate resources and cocreate Industry 4.0 solutions. This thesis investigates the role of collaboration for the development of technologies and solutions in the Industry 4.0 context. To this end, this thesis was organized into three papers, which objectives are: (i) to verify if collaboration through inbound Open Innovation activities with different actors in the supply chain positively moderates the relationship between Industry 4.0 technologies and their expected benefits; (ii) to identify how the characteristics of an innovation ecosystem focused on solutions for Industry 4.0 change at each evolutionary lifecycle stage using elements from social exchange theory; and (iii) to identify which technologies can be configured as platforms through boundary-spanning activities and how they operate collaboratively to develop solutions for Industry 4.0. As a result, this thesis proposes a model that explains the role of collaboration at different levels (supply chains, ecosystems, and platforms) for the development of solutions in the Industry 4.0 context. This research approach combines both qualitative (i.e., focus group, interviews, and case studies) and quantitative (i.e., survey research with multivariate data analysis) aspects. The main results obtained are: (i) we show how collaboration with different actors in the supply chain through Open Innovation strategy has both positive and negative impacts on three strategies associated with product development (cost reduction, focalization, and innovation); (ii) we define the main characteristics of innovation ecosystems focused on the provision of Industry 4.0 solutions, considering an evolutionary lifecycles perspective and a Social Exchange view (iii) we define which are the different technology platforms of the Industry 4.0 context at different operation levels using Boundary-Spanning view. As remarking conclusions, from an academic perspective, these results help to understand how collaboration for the development of new solutions in Industry 4.0 can be analyzed under different perspectives (Open Innovation, Social Exchange Theory, and Boundary-Spanning) and in different contexts of integration (supply chains, ecosystems, and platforms). From a practical perspective, the results help to enlighten a trending business topic by showing how the collaboration among technology providers for Industry 4.0 should be fostered and developed

    Digital upgrade in the automotive supply chain in Mexico: issues and challenges

    Get PDF
    The ongoing digital transformation poses diverse challenges to the automotive sector. While the process of digitalisation will lead to technical and organisational changes across and within the global value chains, the ongoing changes in the trade agreements spurred by the Trump administration may change the location advantages of previous plants and their specialisations. In addition, investment in the electric car may offer first-mover advantages in markets, while requiring the re-organisation of the value chains. Mexico, ranked in 2018 as the seventh producer at world level, is an important case study for several reasons: among these, its cost advantages, its privileged access to the US market, that attracted many OEMs from Europe, Asia, the US, and its role in the prospective regionalization of world trade. By using interviews to automotive suppliers, experts and business associations of the automotive industry, the paper aims at providing a first outline on issues to be addressed in an analysis looking at how these changes are affecting opportunities for the OEMs in their value chains based in the Mexican automotive system

    Metodología de implantación de modelos de gestión de la información dentro de los sistemas de planificación de recursos empresariales. Aplicación en la pequeña y mediana empresa

    Get PDF
    La Siguiente Generación de Sistemas de Fabricación (SGSF) trata de dar respuesta a los requerimientos de los nuevos modelos de empresas, en contextos de inteligencia, agilidad y adaptabilidad en un entono global y virtual. La Planificación de Recursos Empresariales (ERP) con soportes de gestión del producto (PDM) y el ciclo de vida del producto (PLM) proporciona soluciones de gestión empresarial sobre la base de un uso coherente de tecnologías de la información para la implantación en sistemas CIM (Computer-Integrated Manufacturing), con un alto grado de adaptabilidad a la estnictura organizativa deseada. En general, esta implementación se lleva desarrollando hace tiempo en grandes empresas, siendo menor (casi nula) su extensión a PYMEs. La presente Tesis Doctoral, define y desarrolla una nueva metodología de implementación pan la generación automática de la información en los procesos de negocio que se verifican en empresas con requerimientos adaptados a las necesidades de la SGSF, dentro de los sistemas de gestión de los recursos empresariales (ERP), atendiendo a la influencia del factor humano. La validez del modelo teórico de la metodología mencionada se ha comprobado al implementarlo en una empresa del tipo PYME, del sector de Ingeniería. Para el establecimiento del Estado del Arte de este tema se ha diseñado y aplicado una metodología específica basada en el ciclo de mejora continua de Shewhart/Deming, aplicando las herramientas de búsqueda y análisis bibliográfico disponibles en la red con acceso a las correspondientes bases de datos

    Managing enterprise resource planning and multi-organisational enterprise governance:a new contingency framework for the enterprisation of operations

    Get PDF
    This research has been undertaken to determine how successful multi-organisational enterprise strategy is reliant on the correct type of Enterprise Resource Planning (ERP) information systems being used. However there appears to be a dearth of research as regards strategic alignment between ERP systems development and multi-organisational enterprise governance as guidelines and frameworks to assist practitioners in making decision for multi-organisational collaboration supported by different types of ERP systems are still missing from theoretical and empirical perspectives. This calls for this research which investigates ERP systems development and emerging practices in the management of multi-organisational enterprises (i.e. parts of companies working with parts of other companies to deliver complex product-service systems) and identify how different ERP systems fit into different multi-organisational enterprise structures, in order to achieve sustainable competitive success. An empirical inductive study was conducted using the Grounded Theory-based methodological approach based on successful manufacturing and service companies in the UK and China. This involved an initial pre-study literature review, data collection via 48 semi-structured interviews with 8 companies delivering complex products and services across organisational boundaries whilst adopting ERP systems to support their collaborative business strategies – 4 cases cover printing, semiconductor manufacturing, and parcel distribution industries in the UK and 4 cases cover crane manufacturing, concrete production, and banking industries in China in order to form a set of 29 tentative propositions that have been validated via a questionnaire receiving 116 responses from 16 companies. The research has resulted in the consolidation of the validated propositions into a novel concept referred to as the ‘Dynamic Enterprise Reference Grid for ERP’ (DERG-ERP) which draws from multiple theoretical perspectives. The core of the DERG-ERP concept is a contingency management framework which indicates that different multi-organisational enterprise paradigms and the supporting ERP information systems are not the result of different strategies, but are best considered part of a strategic continuum with the same overall business purpose of multi-organisational cooperation. At different times and circumstances in a partnership lifecycle firms may prefer particular multi-organisational enterprise structures and the use of different types of ERP systems to satisfy business requirements. Thus the DERG-ERP concept helps decision makers in selecting, managing and co-developing the most appropriate multi-organistional enterprise strategy and its corresponding ERP systems by drawing on core competence, expected competitiveness, and information systems strategic capabilities as the main contingency factors. Specifically, this research suggests that traditional ERP(I) systems are associated with Vertically Integrated Enterprise (VIE); whilst ERPIIsystems can be correlated to Extended Enterprise (EE) requirements and ERPIII systems can best support the operations of Virtual Enterprise (VE). The contribution of this thesis is threefold. Firstly, this work contributes to a gap in the extant literature about the best fit between ERP system types and multi-organisational enterprise structure types; and proposes a new contingency framework – the DERG-ERP, which can be used to explain how and why enterprise managers need to change and adapt their ERP information systems in response to changing business and operational requirements. Secondly, with respect to a priori theoretical models, the new DERG-ERP has furthered multi-organisational enterprise management thinking by incorporating information system strategy, rather than purely focusing on strategy, structural, and operational aspects of enterprise design and management. Simultaneously, the DERG-ERP makes theoretical contributions to the current IS Strategy Formulation Model which does not explicitly address multi-organisational enterprise governance. Thirdly, this research clarifies and emphasises the new concept and ideas of future ERP systems (referred to as ERPIII) that are inadequately covered in the extant literature. The novel DERG-ERP concept and its elements have also been applied to 8 empirical cases to serve as a practical guide for ERP vendors, information systems management, and operations managers hoping to grow and sustain their competitive advantage with respect to effective enterprise strategy, enterprise structures, and ERP systems use; referred to in this thesis as the “enterprisation of operations”

    Systems consulting and engineering game of innovation : changes to the project definition and scope

    Get PDF
    Innovation -- games of innovation -- Problematic -- Research objective -- Research phases and structure -- Systems integration -- Integrated systems -- IT success factors -- Project definition and success indicators -- Risks, contracts and options -- Research structure and phases -- Observation -- Research objective and hypotheses -- Conceptual model and variable explanations -- Methodology and data collection -- Change request -- Internet infrastructure revamp -- Check imaging -- Based II accord -- Intranet infrastructure migration and application revamp -- Discussion and further analysis -- Firms approaches to a dynamic project definition and scope

    Handbook of Computational Intelligence in Manufacturing and Production Management

    Get PDF
    Artificial intelligence (AI) is simply a way of providing a computer or a machine to think intelligently like human beings. Since human intelligence is a complex abstraction, scientists have only recently began to understand and make certain assumptions on how people think and to apply these assumptions in order to design AI programs. It is a vast knowledge base discipline that covers reasoning, machine learning, planning, intelligent search, and perception building. Traditional AI had the limitations to meet the increasing demand of search, optimization, and machine learning in the areas of large, biological, and commercial database information systems and management of factory automation for different industries such as power, automobile, aerospace, and chemical plants. The drawbacks of classical AI became more pronounced due to successive failures of the decade long Japanese project on fifth generation computing machines. The limitation of traditional AI gave rise to development of new computational methods in various applications of engineering and management problems. As a result, these computational techniques emerged as a new discipline called computational intelligence (CI)

    Innovative configurable and collaborative approach to automation systems engineering for automotive powertrain assembly

    Get PDF
    Presently the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Both, agility and reconfiguration are widely recognised as important attributes for manufacturing systems to satisfy the needs of competitive global markets. To facilitate and accommodate unforeseen business changes within the automotive industry, a new proactive methodology is urgently required for the design, build, assembly and reconfiguration of automation systems. There is also need for the promotion of new technologies and engineering methods to enable true engineering concurrency between product and process development. Virtual construction and testing of new automation systems prior to build is now identified as a crucial requirement to enable system verification and to allow the investigation of design alternatives prior to building and testing physical systems. The main focus of this research was to design and develop reconfigurable assembly systems within the powertrain sector of the automotive industry by capturing and modelling relevant business and engineering processes. This research has proposed and developed a more process-efficient and robust automation system design, build and implementation approach via new engineering services and a standard library of reusable mechanisms. Existing research at Loughborough had created the basic technology for a component based approach to automation. However, no research had been previously undertaken on the application of this approach in a user engineering and business context. The objective of this research was therefore to utilise this prototype method and associated engineering tools and to devise novel business and engineering processes to enable the component-based approach to be applied in industry. This new approach has been named Configurable and Collaborative Automation Systems (CO AS). In particular this new research has studied the implications of migration to a COAS approach in terms of I) necessary changes to the end-users business processes, 2) potential to improve the robustness of the resultant system and 3) potential for improved efficiency and greater collaboration across the supply chain... cont'

    Exploratory research into supply chain voids within Welsh priority business sectors

    Get PDF
    The paper reports the findings resulting from the initial stages of an exploratory investigation into Supply Chain Voids (SCV) in Wales. The research forms the foundations of a PhD thesis which is framed within the sectors designated as important by the Welsh Assembly Government (WAG) and indicates local supplier capability voids within their supply chains. This paper covers the stages of initial data gathering, analysis and results identified between June 2006 and April 2007, whilst addressing the first of four research questions. Finally, the approach to address future research is identified in order to explain how the PhD is to progress
    corecore