86 research outputs found

    Identities in the spirit of Euler

    Get PDF
    In this paper we develop new identities in the spirit of Euler. We shall investigate and report on new Euler identities of weight p+2, for p an odd integer, but with a non unitary argument of the harmonic numbers. Some examples of these Euler identities will be given in terms of Riemann zeta values, Dirichlet values and other special functions.peerReviewe

    Special values of multiple polylogarithms

    Get PDF
    Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier

    Baikov-Lee Representations Of Cut Feynman Integrals

    Full text link
    We develop a general framework for the evaluation of dd-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy's residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.Comment: 37 pages; v2 is the published version of this work with references added relative to v

    Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity

    Get PDF
    In each of the 10 cases with propagators of unit or zero mass, the finite part of the scalar 3-loop tetrahedral vacuum diagram is reduced to 4-letter words in the 7-letter alphabet of the 1-forms Ω:=dz/z\Omega:=dz/z and ωp:=dz/(λpz)\omega_p:=dz/ (\lambda^{-p}-z), where λ\lambda is the sixth root of unity. Three diagrams yield only ζ(Ω3ω0)=1/90π4\zeta(\Omega^3\omega_0)=1/90\pi^4. In two cases π4\pi^4 combines with the Euler-Zagier sum ζ(Ω2ω3ω0)=m>n>0(1)m+n/m3n\zeta(\Omega^2\omega_3\omega_0)=\sum_{m> n>0}(-1)^{m+n}/m^3n; in three cases it combines with the square of Clausen's Cl2(π/3)=ζ(Ωω1)=n>0sin(πn/3)/n2Cl_2(\pi/3)=\Im \zeta(\Omega\omega_1)=\sum_{n>0}\sin(\pi n/3)/n^2. The case with 6 masses involves no further constant; with 5 masses a Deligne-Euler-Zagier sum appears: ζ(Ω2ω3ω1)=m>n>0(1)mcos(2πn/3)/m3n\Re \zeta(\Omega^2\omega_3\omega_1)= \sum_{m>n>0}(-1)^m\cos(2\pi n/3)/m^3n. The previously unidentified term in the 3-loop rho-parameter of the standard model is merely D3=6ζ(3)6Cl22(π/3)1/24π4D_3=6\zeta(3)-6 Cl_2^2(\pi/3)-{1/24}\pi^4. The remarkable simplicity of these results stems from two shuffle algebras: one for nested sums; the other for iterated integrals. Each diagram evaluates to 10 000 digits in seconds, because the primitive words are transformable to exponentially convergent single sums, as recently shown for ζ(3)\zeta(3) and ζ(5)\zeta(5), familiar in QCD. Those are SC(2)^*(2) constants, whose base of super-fast computation is 2. Mass involves the novel base-3 set SC(3)^*(3). All 10 diagrams reduce to SC(3)^*(3)\cupSC(2)^* (2) constants and their products. Only the 6-mass case entails both bases.Comment: 41 pages, LaTe

    On one dimensional digamma and polygamma series related to the evaluation of Feynman diagrams

    Full text link
    We consider summations over digamma and polygamma functions, often with summands of the form (\pm 1)^n\psi(n+p/q)/n^r and (\pm 1)^n\psi^{(m)} (n+p/q)/n^r, where m, p, q, and r are positive integers. We develop novel general integral representations and present explicit examples. Special cases of the sums reduce to known linear Euler sums. The sums of interest find application in quantum field theory, including evaluation of Feynman amplitudes.Comment: to appear in J. Comput. Appl. Math.; corrected proof available online with this journal; no figure

    Polypseudologarithms revisited

    Full text link
    Lee, in a series of papers, described a unified formulation of the statistical thermodynamics of ideal quantum gases in terms of the polylogarithm functions, Lis(z)\textup{Li}_{s} (z). It is aimed here to investigate the functions Lis(z),\textup{Li}_{s} (z), for s=0,1,2,...,s = 0, -1, -2, ..., which are, following Lee, referred to as the polypseudologarithms (or polypseudologs) of order nn. Various known results regarding polypseudologs, mainly obtained in widely differing contexts and currently scattered throughout the literature, have been brought together along with many new results and insights and they all have been proved in a simple and unified manner. In addition, a new general explicit closed-form formula for these functions involving the Carlitz--Scoville higher tangent numbers has been established.Comment: 10 page
    corecore