50 research outputs found

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Stochastic Bayesian Games for the Cybersecurity of Nuclear Power Plants

    Get PDF
    The goal of this research is to reduce the likelihood of successful attacks on nuclear power plants. Cyber-physical systems such as nuclear power plants consist of interconnected physical processes and computational resources. Because the cyber and physical worlds are integrated, vulnerabilities in both the cyber and physical domains can result in physical damage to the system. Nuclear power plants can be targeted by a variety of adversaries — each with a unique motivation and set of resources. To secure nuclear power plants and other cyber-physical systems, we require an approach to security that also accounts for the interactions of human decision-makers. This research uses a game-theoretic approach to nuclear cybersecurity. The cybersecurity of the plant can be viewed as a non-cooperative game between a defender and an attacker. The field of game theory provides a mathematical framework to analyze the interactions of the defender and attacker as both players seek to accomplish their objectives. In this research, a stochastic Bayesian game is used to optimize cybersecurity decision-making. A stochastic Bayesian game is a combination of a stochastic game and a Bayesian game. The stochastic elements of the game enable the consideration of uncertainty in the interactions of the attacker and defender. The Bayesian elements of the game enable the consideration of the uncertainty regarding the attacker's characteristics. This combination is useful for the analysis of nuclear power plant cybersecurity because it enables plant defenders to optimize their security decisions in the presence of uncertainty

    ESTIMATION-BASED SOLUTIONS TO INCOMPLETE INFORMATION PURSUIT-EVASION GAMES

    Get PDF
    Differential games are a useful tool both for modeling conflict between autonomous systems and for synthesizing robust control solutions. The traditional study of games has assumed decision agents possess complete information about one another’s strategies and numerical weights. This dissertation relaxes this assumption. Instead, uncertainty in the opponent’s strategy is treated as a symptom of the inevitable gap between modeling assumptions and applications. By combining nonlinear estimation approaches with problem domain knowledge, procedures are developed for acting under uncertainty using established methods that are suitable for applications on embedded systems. The dissertation begins by using nonlinear estimation to account for parametric uncertainty in an opponent’s strategy. A solution is proposed for engagements in which both players use this approach simultaneously. This method is demonstrated on a numerical example of an orbital pursuit-evasion game, and the findings motivate additional developments. First, the solutions of the governing Riccati differential equations are approximated, using automatic differentiation to obtain high-degree Taylor series approximations. Second, constrained estimation is introduced to prevent estimator failures in near-singular engagements. Numerical conditions for nonsingularity are approximated using Chebyshev polynomial basis functions, and applied as constraints to a state estimate. Third and finally, multiple model estimation is suggested as a practical solution for time-critical engagements in which the form of the opponent’s strategy is uncertain. Deceptive opponent strategies are identified as a candidate approach to use against an adaptive player, and a procedure for designing such strategies is proposed. The new developments are demonstrated in a missile interception pursuit-evasion game in which the evader selects from a set of candidate strategies with unknown weights

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore