432 research outputs found

    Fourier-Gegenbauer Pseudospectral Method for Solving Periodic Fractional Optimal Control Problems

    Full text link
    This paper introduces a new accurate model for periodic fractional optimal control problems (PFOCPs) using Riemann-Liouville (RL) and Caputo fractional derivatives (FDs) with sliding fixed memory lengths. The paper also provides a novel numerical method for solving PFOCPs using Fourier and Gegenbauer pseudospectral methods. By employing Fourier collocation at equally spaced nodes and Fourier and Gegenbauer quadratures, the method transforms the PFOCP into a simple constrained nonlinear programming problem (NLP) that can be treated easily using standard NLP solvers. We propose a new transformation that largely simplifies the problem of calculating the periodic FDs of periodic functions to the problem of evaluating the integral of the first derivatives of their trigonometric Lagrange interpolating polynomials, which can be treated accurately and efficiently using Gegenbauer quadratures. We introduce the notion of the {\alpha}th-order fractional integration matrix with index L based on Fourier and Gegenbauer pseudospectral approximations, which proves to be very effective in computing periodic FDs. We also provide a rigorous priori error analysis to predict the quality of the Fourier-Gegenbauer-based approximations to FDs. The numerical results of the benchmark PFOCP demonstrate the performance of the proposed pseudospectral method.Comment: 10 pages, 11 figure

    A space-time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives

    Full text link
    We propose a direct numerical method for the solution of an optimal control problem governed by a two-side space-fractional diffusion equation. The presented method contains two main steps. In the first step, the space variable is discretized by using the Jacobi-Gauss pseudospectral discretization and, in this way, the original problem is transformed into a classical integer-order optimal control problem. The main challenge, which we faced in this step, is to derive the left and right fractional differentiation matrices. In this respect, novel techniques for derivation of these matrices are presented. In the second step, the Legendre-Gauss-Radau pseudospectral method is employed. With these two steps, the original problem is converted into a convex quadratic optimization problem, which can be solved efficiently by available methods. Our approach can be easily implemented and extended to cover fractional optimal control problems with state constraints. Five test examples are provided to demonstrate the efficiency and validity of the presented method. The results show that our method reaches the solutions with good accuracy and a low CPU time.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Vibration and Control', available from [http://journals.sagepub.com/home/jvc]. Submitted 02-June-2018; Revised 03-Sept-2018; Accepted 12-Oct-201

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Fourier-Gegenbauer Pseudospectral Method for Solving Time-Dependent One-Dimensional Fractional Partial Differential Equations with Variable Coefficients and Periodic Solutions

    Full text link
    In this paper, we present a novel pseudospectral (PS) method for solving a new class of initial-value problems (IVPs) of time-dependent one-dimensional fractional partial differential equations (FPDEs) with variable coefficients and periodic solutions. A main ingredient of our work is the use of the recently developed periodic RL/Caputo fractional derivative (FD) operators with sliding positive fixed memory length of Bourafa et al. [1] or their reduced forms obtained by Elgindy [2] as the natural FD operators to accurately model FPDEs with periodic solutions. The proposed method converts the IVP into a well-conditioned linear system of equations using the PS method based on Fourier collocations and Gegenbauer quadratures. The reduced linear system has a simple special structure and can be solved accurately and rapidly by using standard linear system solvers. A rigorous study of the error and convergence of the proposed method is presented. The idea and results presented in this paper are expected to be useful in the future to address more general problems involving FPDEs with periodic solutions.Comment: 13 pages, 3 figures. arXiv admin note: text overlap with arXiv:2304.0445

    A unified meshfree pseudospectral method for solving both classical and fractional PDEs

    Full text link
    In this paper, we propose a meshfree method based on the Gaussian radial basis function (RBF) to solve both classical and fractional PDEs. The proposed method takes advantage of the analytical Laplacian of Gaussian functions so as to accommodate the discretization of the classical and fractional Laplacian in a single framework and avoid the large computational cost for numerical evaluation of the fractional derivatives. These important merits distinguish it from other numerical methods for fractional PDEs. Moreover, our method is simple and easy to handle complex geometry and local refinement, and its computer program implementation remains the same for any dimension d≥1d \ge 1. Extensive numerical experiments are provided to study the performance of our method in both approximating the Dirichlet Laplace operators and solving PDE problems. Compared to the recently proposed Wendland RBF method, our method exactly incorporates the Dirichlet boundary conditions into the scheme and is free of the Gibbs phenomenon as observed in the literature. Our studies suggest that to obtain good accuracy the shape parameter cannot be too small or too big, and the optimal shape parameter might depend on the RBF center points and the solution properties.Comment: 24 pages; 15 figure
    • …
    corecore