339 research outputs found

    On Generalizations of Network Design Problems with Degree Bounds

    Get PDF
    Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely, laminar crossing spanning tree), and (2) by incorporating `degree bounds' in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Multicommodity flows and polyhedra

    Get PDF

    Min-max results in combinatorial optimization

    Get PDF

    Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

    Full text link
    Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixed-integer program with few (even constantly many) integer variables. This is in stark contrast to linear formulations, where recent breakthroughs in the field of extended formulations have shown that many polytopes associated to classical combinatorial optimization problems do not even admit approximate extended formulations of sub-exponential size. We provide a general framework for lifting inapproximability results of extended formulations to the setting of mixed-integer extended formulations, and obtain almost tight lower bounds on the number of integer variables needed to describe a variety of classical combinatorial optimization problems. Among the implications we obtain, we show that any mixed-integer extended formulation of sub-exponential size for the matching polytope, cut polytope, traveling salesman polytope or dominant of the odd-cut polytope, needs Ω(n/logn) \Omega(n/\log n) many integer variables, where n n is the number of vertices of the underlying graph. Conversely, the above-mentioned polyhedra admit polynomial-size mixed-integer formulations with only O(n) O(n) or O(nlogn) O(n \log n) (for the traveling salesman polytope) many integer variables. Our results build upon a new decomposition technique that, for any convex set C C , allows for approximating any mixed-integer description of C C by the intersection of C C with the union of a small number of affine subspaces.Comment: A conference version of this paper will be presented at SODA 201

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    A characterization of box 1/d1/d-integral binary clutters

    Get PDF
    Let Q6 denote the port of the dual Fano matroid F*7 and let Q7 denote the clutter consisting of the circuits of the Fano matroid F7 that contain a given element. Let be a binary clutter on E and let d = 2 be an integer. We prove that all the vertices of the polytope {x E+ | x(C) = 1 for C } n {x | a = x = b} are -integral, for any -integral a, b, if and only if does not have Q6 or Q7 as a minor. This includes the class of ports of regular matroids. Applications to graphs are presented, extending a result from Laurent and Pojiak [7]

    A generalization of totally unimodular and network matrices.

    Get PDF
    In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our purpose is to introduce new classes of matrices that preserve the advantageous properties of these well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimodular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral vector by an integer k. We argue that simply generalizing the determinantal structure of totally unimodular matrices does not suffice to achieve this goal and one has to extend the range of values the inverses of submatrices can contain. To this end, we define k-regular matrices. We show that k-regularity is a proper generalization of total unimodularity in polyhedral terms, as it guarantees the scalability of vertices. Moreover, we prove that the k-regularity of a matrix is necessary and sufficient for substituting mod-k cuts for rank-1 Chvatal-Gomory cuts. In the second part of the thesis we introduce binet matrices, an extension of network matrices to bidirected graphs. We provide an algorithm to calculate the columns of a binet matrix using the underlying graphical structure. Using this method, we prove some results about binet matrices and demonstrate that several interesting classes of matrices are binet. We show that binet matrices are 2-regular, therefore they provide half-integral vertices for a polyhedron with a binet constraint matrix and integral right hand side vector. We also prove that optimization on such a polyhedron can be carried out very efficiently, as there exists an extension of the network simplex method for binet matrices. Furthermore, the integer optimization with binet matrices is equivalent to solving a matching problem. We also describe the connection of k-regular and binet matrices to other parts of combinatorial optimization, notably to matroid theory and regular vectorspaces
    corecore