779 research outputs found

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Counting faces of randomly-projected polytopes when the projection radically lowers dimension

    Full text link
    This paper develops asymptotic methods to count faces of random high-dimensional polytopes. Beyond its intrinsic interest, our conclusions have surprising implications - in statistics, probability, information theory, and signal processing - with potential impacts in practical subjects like medical imaging and digital communications. Three such implications concern: convex hulls of Gaussian point clouds, signal recovery from random projections, and how many gross errors can be efficiently corrected from Gaussian error correcting codes.Comment: 56 page

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Enumerating a subset of the integer points inside a Minkowski sum

    Get PDF
    AbstractSparse elimination exploits the structure of algebraic equations in order to obtain tighter bounds on the number of roots and better complexity in numerically approximating them. The model of sparsity is of combinatorial nature, thus leading to certain problems in general-dimensional convex geometry. This work addresses one such problem, namely the computation of a certain subset of integer points in the interior of integer convex polytopes. These polytopes are Minkowski sums, but avoiding their explicit construction is precisely one of the main features of the algorithm. Complexity bounds for our algorithm are derived under certain hypotheses, in terms of output-size and the sparsity parameters. A public domain implementation is described and its performance studied. Linear optimization lies at the inner loop of the algorithm, hence we analyze the structure of the linear programs and compare different implementations

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli
    corecore