1,279 research outputs found

    Integral Geometric Dual Distributions of Multilinear Models

    Get PDF
    We propose an integral geometric approach for computing dual distributions for the parameter distributions of multilinear models. The dual distributions can be computed from, for example, the parameter distributions of conics, multiple view tensors, homographies, or as simple entities as points, lines, and planes. The dual distributions have analytical forms that follow from the asymptotic normality property of the maximum likelihood estimator and an application of integral transforms, fundamentally the generalised Radon transforms, on the probability density of the parameters. The approach allows us, for instance, to look at the uncertainty distributions in feature distributions, which are essentially tied to the distribution of training data, and helps us to derive conditional distributions for interesting variables and characterise confidence intervals of the estimates

    Measuring the interactions among variables of functions over the unit hypercube

    Get PDF
    By considering a least squares approximation of a given square integrable function f ⁣:[0,1]nRf\colon[0,1]^n\to\R by a multilinear polynomial of a specified degree, we define an index which measures the overall interaction among variables of ff. This definition extends the concept of Banzhaf interaction index introduced in cooperative game theory. Our approach is partly inspired from multilinear regression analysis, where interactions among the independent variables are taken into consideration. We show that this interaction index has appealing properties which naturally generalize the properties of the Banzhaf interaction index. In particular, we interpret this index as an expected value of the difference quotients of ff or, under certain natural conditions on ff, as an expected value of the derivatives of ff. These interpretations show a strong analogy between the introduced interaction index and the overall importance index defined by Grabisch and Labreuche [7]. Finally, we discuss a few applications of the interaction index

    Hochschild Cohomology Theories in White Noise Analysis

    Get PDF
    We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same.Comment: This is a contribution to the Special Issue on Deformation Quantization, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Supergeometry and Quantum Field Theory, or: What is a Classical Configuration?

    Get PDF
    We discuss of the conceptual difficulties connected with the anticommutativity of classical fermion fields, and we argue that the "space" of all classical configurations of a model with such fields should be described as an infinite-dimensional supermanifold M. We discuss the two main approaches to supermanifolds, and we examine the reasons why many physicists tend to prefer the Rogers approach although the Berezin-Kostant-Leites approach is the more fundamental one. We develop the infinite-dimensional variant of the latter, and we show that the functionals on classical configurations considered in a previous paper are nothing but superfunctions on M. We present a programme for future mathematical work, which applies to any classical field model with fermion fields. This programme is (partially) implemented in successor papers.Comment: 46 pages, LateX2E+AMSLaTe

    Kinematic Quantities and Raychaudhuri Equations in a 5D5D Universe

    Full text link
    Based on some ideas emerged from the classical Kaluza-Klein theory, we present a 5D5D universe as a product bundle over the 4D4D spacetime. This enables us to introduce and study two categories of kinematic quantities (expansions, shear, vorticity) in a 5D5D universe. One category is related to the fourth dimension (time), and the other one comes from the assumption of the existence of the fifth dimension. The Raychaudhuri type equations that we obtain in the paper, lead us to results on the evolution of both the 4D4D expansion and 5D5D expansion in a 5D5D universe.Comment: 27 page
    corecore