32,587 research outputs found

    Quantum invariants of motion in a generic many-body system

    Full text link
    Dynamical Lie-algebraic method for the construction of local quantum invariants of motion in non-integrable many-body systems is proposed and applied to a simple but generic toy model, namely an infinite kicked tVt-V chain of spinless fermions. Transition from integrable via {pseudo-integrable (\em intermediate}) to quantum ergodic (quantum mixing) regime in parameter space is investigated. Dynamical phase transition between ergodic and intermediate (neither ergodic nor completely integrable) regime in thermodynamic limit is proposed. Existence or non-existence of local conservation laws corresponds to intermediate or ergodic regime, respectively. The computation of time-correlation functions of typical observables by means of local conservation laws is found fully consistent with direct calculations on finite systems.Comment: 4 pages in REVTeX with 5 eps figures include

    Quantum transfer-matrices for the sausage model

    Full text link
    In this work we revisit the problem of the quantization of the two-dimensional O(3) non-linear sigma model and its one-parameter integrable deformation -- the sausage model. Our consideration is based on the so-called ODE/IQFT correspondence, a variant of the Quantum Inverse Scattering Method.The approach allowed us to explore the integrable structures underlying the quantum O(3)/sausage model. Among the obtained results is a system of non-linear integral equations for the computation of the vacuum eigenvalues of the quantum transfer-matrices.Comment: 89 pages, 10 figures, v2: misprints corrected, some comments added, v3, v4: minor corrections, references adde

    Correlation Functions in 2-Dimensional Integrable Quantum Field Theories

    Get PDF
    In this talk I discuss the form factor approach used to compute correlation functions of integrable models in two dimensions. The Sinh-Gordon model is our basic example. Using Watson's and the recursive equations satisfied by matrix elements of local operators, I present the computation of the form factors of the elementary field ϕ(x)\phi(x) and the stress-energy tensor Tμν(x)T_{\mu\nu}(x) of the theory.Comment: 19pp, LATEX version, (talk at Como Conference on ``Integrable Quantum Field Theories''

    Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: Complete spectrum and matrix elements of some quasi-local operators

    Full text link
    The integrable quantum models, associated to the transfer matrices of the 6-vertex reflection algebra for spin 1/2 representations, are studied in this paper. In the framework of Sklyanin's quantum separation of variables (SOV), we provide the complete characterization of the eigenvalues and eigenstates of the transfer matrix and the proof of the simplicity of the transfer matrix spectrum. Moreover, we use these integrable quantum models as further key examples for which to develop a method in the SOV framework to compute matrix elements of local operators. This method has been introduced first in [1] and then used also in [2], it is based on the resolution of the quantum inverse problem (i.e. the reconstruction of all local operators in terms of the quantum separate variables) plus the computation of the action of separate covectors on separate vectors. In particular, for these integrable quantum models, which in the homogeneous limit reproduce the open spin-1/2 XXZ quantum chains with non-diagonal boundary conditions, we have obtained the SOV-reconstructions for a class of quasi-local operators and determinant formulae for the covector-vector actions. As consequence of these findings we provide one determinant formulae for the matrix elements of this class of reconstructed quasi-local operators on transfer matrix eigenstates.Comment: 40 pages. Minor modifications in the text and some notations and some more reference adde

    Hamiltonian Dynamics, Classical R-matrices and Isomonodromic Deformations

    Full text link
    The Hamiltonian approach to the theory of dual isomonodromic deformations is developed within the framework of rational classical R-matrix structures on loop algebras. Particular solutions to the isomonodromic deformation equations appearing in the computation of correlation functions in integrable quantum field theory models are constructed through the Riemann-Hilbert problem method. The corresponding τ\tau-functions are shown to be given by the Fredholm determinant of a special class of integral operators.Comment: LaTeX 13pgs (requires lamuphys.sty). Text of talk given at workshop: Supersymmetric and Integrable Systems, University of Illinois, Chicago Circle, June 12-14, 1997. To appear in: Springer Lecture notes in Physic

    Measurement and Information Extraction in Complex Dynamics Quantum Computation

    Full text link
    We address the problem related to the extraction of the information in the simulation of complex dynamics quantum computation. Here we present an example where important information can be extracted efficiently by means of quantum simulations. We show how to extract efficiently the localization length, the mean square deviation and the system characteristic frequency. We show how this methods work on a dynamical model, the Sawtooth Map, that is characterized by very different dynamical regimes: from near integrable to fully developed chaos; it also exhibits quantum dynamical localization.Comment: 8 pages, 4 figures, Proceeding of "First International Workshop DICE2002 - Piombino (Tuscany), (2002)
    corecore