652 research outputs found

    Hydrodynamics of the interacting Bose gas in the Quantum Newton Cradle setup

    Get PDF
    Describing and understanding the motion of quantum gases out of equilibrium is one of the most important modern challenges for theorists. In the groundbreaking Quantum Newton Cradle experiment [Kinoshita, Wenger and Weiss, Nature 440, 900, 2006], quasi-one-dimensional cold atom gases were observed with unprecedented accuracy, providing impetus for many developments on the effects of low dimensionality in out-of-equilibrium physics. But it is only recently that the theory of generalized hydrodynamics has provided the adequate tools for a numerically efficient description. Using it, we give a complete numerical study of the time evolution of an ultracold atomic gas in this setup, in an interacting parameter regime close to that of the original experiment. We evaluate the full evolving phase-space distribution of particles. We simulate oscillations due to the harmonic trap, the collision of clouds without thermalization, and observe a small elongation of the actual oscillation period and cloud deformations due to many-body dephasing. We also analyze the effects of weak anharmonicity. In the experiment, measurements are made after release from the one-dimensional trap. We evaluate the gas density curves after such a release, characterizing the actual time necessary for reaching the asymptotic state where the integrable quasi-particle momentum distribution function emerges.Comment: v1: 7+10 pages, 3+7 figures. v2: references added, pictures with refined discretization. v3: addition of discussion of integrability breaking by trap + small improvement

    Momentum and energy preserving integrators for nonholonomic dynamics

    Get PDF
    In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian defined on QxQ, where Q is the configuration manifold, and a (generally nonintegrable) distribution in TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the discrete nonholonomic momentum map, and also that the nonholonomic constraints are preserved in average. We study in particular the case where Q has a Lie group structure and the discrete Lagrangian and/or nonholonomic constraints have various invariance properties, and show that the method is also energy-preserving in some important cases.Comment: 18 pages, 6 figures; v2: example and figures added, minor correction to example 2; v3: added section on nonholonomic Stoermer-Verlet metho

    Mechanical Systems: Symmetry and Reduction

    Get PDF
    Reduction theory is concerned with mechanical systems with symmetries. It constructs a lower dimensional reduced space in which associated conservation laws are taken out and symmetries are \factored out" and studies the relation between the dynamics of the given system with the dynamics on the reduced space. This subject is important in many areas, such as stability of relative equilibria, geometric phases and integrable systems

    Geometric Numerical Integration

    Get PDF
    The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods

    Invariant varieties of periodic points for the discrete Euler top

    No full text
    The behaviour of periodic points of discrete Euler top is studied. We derive invariant varieties of periodic points explicitly. When the top is axially symmetric they are specified by some particular values of the angular velocity along the axis of symmetry, different for each period

    Growth and integrability of some birational maps in dimension three

    Full text link
    Motivated by the study of the Kahan--Hirota--Kimura discretisation of the Euler top, we characterise the growth and integrability properties of a collection of elements in the Cremona group of a complex projective 3-space using techniques from algebraic geometry. This collection consists of maps obtained by composing the standard Cremona transformation c3Bir(P3)\mathrm{c}_3\in\mathrm{Bir}(\mathbb{P}^3) with projectivities that permute the fixed points of c3\mathrm{c}_3 and the points over which c3\mathrm{c}_3 performs a divisorial contraction. More specifically, we show that three behaviour are possible: (A) integrable with quadratic degree growth and two invariants, (B) periodic with two-periodic degree sequences and more than two invariants, and (C) non-integrable with submaximal degree growth and one invariant.Comment: 46 pages, 6 figures, 7 tables, comments are welcom

    SDE based regression for random PDEs

    Get PDF
    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour
    corecore