4,022 research outputs found

    Minimum cost b-matching problems with neighborhoods

    Get PDF
    In this paper, we deal with minimum cost b-matching problems on graphs where the nodes are assumed to belong to non-necessarily convex regions called neighborhoods, and the costs are given by the distances between points of the neighborhoods. The goal in the proposed problems is twofold: (i) finding a b-matching in the graph and (ii) determining a point in each neighborhood to be the connection point among the edges defining the b-matching. Different variants of the minimum cost b-matching problem are considered depending on the criteria to match neighborhoods: perfect, maximum cardinality, maximal and the a-b-matching problems. The theoretical complexity of solving each one of these problems is analyzed. Different mixed integer non-linear programming formulations are proposed for each one of the considered problems and then reformulated as Second Order Cone formulations. An extensive computational experience shows the efficiency of the proposed formulations to solve the problems under study

    Optimal Recombination in Genetic Algorithms

    Full text link
    This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
    • …
    corecore