88 research outputs found

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Machine learning techniques for robotic and autonomous inspection of mechanical systems and civil infrastructure

    Get PDF
    Machine learning and in particular deep learning techniques have demonstrated the most efficacy in training, learning, analyzing, and modelling large complex structured and unstructured datasets. These techniques have recently been commonly deployed in different industries to support robotic and autonomous system (RAS) requirements and applications ranging from planning and navigation to machine vision and robot manipulation in complex environments. This paper reviews the state-of-the-art with regard to RAS technologies (including unmanned marine robot systems, unmanned ground robot systems, climbing and crawler robots, unmanned aerial vehicles, and space robot systems) and their application for the inspection and monitoring of mechanical systems and civil infrastructure. We explore various types of data provided by such systems and the analytical techniques being adopted to process and analyze these data. This paper provides a brief overview of machine learning and deep learning techniques, and more importantly, a classification of the literature which have reported the deployment of such techniques for RAS-based inspection and monitoring of utility pipelines, wind turbines, aircrafts, power lines, pressure vessels, bridges, etc. Our research provides documented information on the use of advanced data-driven technologies in the analysis of critical assets and examines the main challenges to the applications of such technologies in the industry

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    • …
    corecore