102 research outputs found

    Workshop - Systems Design Meets Equation-based Languages

    Get PDF

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Consuming data sources to generate actionable items

    Get PDF
    Plataforma que consumeixi sensors IoT i sistemes d'alertes per a generar accions de resposta relacionades amb els sistemes d'alerta. Per a demostrar els casos d'ús possibles s'incorporaran funcions requerides per Projectes Europeus, solucions comercials i solucions compatibles amb estàndards

    A Domain Specific Language for Digital Forensics and Incident Response Analysis

    Get PDF
    One of the longstanding conceptual problems in digital forensics is the dichotomy between the need for verifiable and reproducible forensic investigations, and the lack of practical mechanisms to accomplish them. With nearly four decades of professional digital forensic practice, investigator notes are still the primary source of reproducibility information, and much of it is tied to the functions of specific, often proprietary, tools. The lack of a formal means of specification for digital forensic operations results in three major problems. Specifically, there is a critical lack of: a) standardized and automated means to scientifically verify accuracy of digital forensic tools; b) methods to reliably reproduce forensic computations (their results); and c) framework for inter-operability among forensic tools. Additionally, there is no standardized means for communicating software requirements between users, researchers and developers, resulting in a mismatch in expectations. Combined with the exponential growth in data volume and complexity of applications and systems to be investigated, all of these concerns result in major case backlogs and inherently reduce the reliability of the digital forensic analyses. This work proposes a new approach to the specification of forensic computations, such that the above concerns can be addressed on a scientific basis with a new domain specific language (DSL) called nugget. DSLs are specialized languages that aim to address the concerns of particular domains by providing practical abstractions. Successful DSLs, such as SQL, can transform an application domain by providing a standardized way for users to communicate what they need without specifying how the computation should be performed. This is the first effort to build a DSL for (digital) forensic computations with the following research goals: 1) provide an intuitive formal specification language that covers core types of forensic computations and common data types; 2) provide a mechanism to extend the language that can incorporate arbitrary computations; 3) provide a prototype execution environment that allows the fully automatic execution of the computation; 4) provide a complete, formal, and auditable log of computations that can be used to reproduce an investigation; 5) demonstrate cloud-ready processing that can match the growth in data volumes and complexity

    Evolvable Smartphone-Based Point-of-Care Systems For In-Vitro Diagnostics

    Get PDF
    Recent developments in the life-science -omics disciplines, together with advances in micro and nanoscale technologies offer unprecedented opportunities to tackle some of the major healthcare challenges of our time. Lab-on-Chip technologies coupled with smart-devices in particular, constitute key enablers for the decentralization of many in-vitro medical diagnostics applications to the point-of-care, supporting the advent of a preventive and personalized medicine. Although the technical feasibility and the potential of Lab-on-Chip/smart-device systems is repeatedly demonstrated, direct-to-consumer applications remain scarce. This thesis addresses this limitation. System evolvability is a key enabler to the adoption and long-lasting success of next generation point-of-care systems by favoring the integration of new technologies, streamlining the reengineering efforts for system upgrades and limiting the risk of premature system obsolescence. Among possible implementation strategies, platform-based design stands as a particularly suitable entry point. One necessary condition, is for change-absorbing and change-enabling mechanisms to be incorporated in the platform architecture at initial design-time. Important considerations arise as to where in Lab-on-Chip/smart-device platforms can these mechanisms be integrated, and how to implement them. Our investigation revolves around the silicon-nanowire biological field effect transistor, a promising biosensing technology for the detection of biological analytes at ultra low concentrations. We discuss extensively the sensitivity and instrumentation requirements set by the technology before we present the design and implementation of an evolvable smartphone-based platform capable of interfacing lab-on-chips embedding such sensors. We elaborate on the implementation of various architectural patterns throughout the platform and present how these facilitated the evolution of the system towards one accommodating for electrochemical sensing. Model-based development was undertaken throughout the engineering process. A formal SysML system model fed our evolvability assessment process. We introduce, in particular, a model-based methodology enabling the evaluation of modular scalability: the ability of a system to scale the current value of one of its specification by successively reengineering targeted system modules. The research work presented in this thesis provides a roadmap for the development of evolvable point-of-care systems, including those targeting direct-to-consumer applications. It extends from the early identification of anticipated change, to the assessment of the ability of a system to accommodate for these changes. Our research should thus interest industrials eager not only to disrupt, but also to last in a shifting socio-technical paradigm

    Interactive Model-Based Compilation: A Modeller-Driven Development Approach

    Get PDF
    There is a growing tendency for using domain-specific languages, which help domain experts to stay focussed on abstract problem solutions. It is important to carefully design these languages and tools, which fundamentally perform model-to-model transformations. The quality of both usually decides the effectiveness of the subsequent development and therefore the quality of the final applications. However, as the complexity and safety requirements of modern systems grow, it becomes increasingly burdensome to create highly customized languages and difficult to provide reasonable overviews within these tools. This thesis introduces a new interactive model-based compilation methodology. Compilations for arbitrary model-to-model transformations are themselves described as models. They can be instantiated for particular inputs, e. g. a program, to create concrete compilation runs, which return the result of that compilation. The compilation instance is interactively observable. Intermediate results serve as new inputs and as documentation. They can be used to create highly customized views and facilitate understandability. This methodology guides modellers from the start of the compilation to the final result so that they can interactively refine their models. The methodology has been implemented and validated as the KIELER Compiler (KiCo) and is available as part of the KIELER open-source project. It is used to implement the current reference compiler for the SCCharts language, a statecharts dialect designed for specifying safety-critical reactive systems based on a synchronous model of computation. The interactive model-based compilation approach was key to the rapid prototyping of three different compilation strategies, as well as new language extensions, variations and closely related languages. The results are verified with benchmarks, which are again modelled using the same approach and technology. The usability of the SCCharts language and the KiCo tooling is documented with long-term surveys and real-life industrial, academic and teaching examples

    Large-Scale Integration of Heterogeneous Simulations

    Get PDF

    Cyber-Physical Systems of Systems: Foundations – A Conceptual Model and Some Derivations: The AMADEOS Legacy

    Get PDF
    Computer Systems Organization and Communication Networks; Software Engineering; Complex Systems; Information Systems Applications (incl. Internet); Computer Application
    • …
    corecore