114 research outputs found

    Sandboxed, Online Debugging of Production Bugs for SOA Systems

    Get PDF
    Short time-to-bug localization is extremely important for any 24x7 service-oriented application. To this end, we introduce a new debugging paradigm called live debugging. There are two goals that any live debugging infrastructure must meet: Firstly, it must offer real-time insight for bug diagnosis and localization, which is paramount when errors happen in user-facing applications. Secondly, live debugging should not impact user-facing performance for normal events. In large distributed applications, bugs which impact only a small percentage of users are common. In such scenarios, debugging a small part of the application should not impact the entire system. With the above-stated goals in mind, this thesis presents a framework called Parikshan, which leverages user-space containers (OpenVZ) to launch application instances for the express purpose of live debugging. Parikshan is driven by a live-cloning process, which generates a replica (called debug container) of production services, cloned from a production container which continues to provide the real output to the user. The debug container provides a sandbox environment, for safe execution of monitoring/debugging done by the users without any perturbation to the execution environment. As a part of this framework, we have designed customized-network proxies, which replicate inputs from clients to both the production and test-container, as well safely discard all outputs. Together the network duplicator, and the debug container ensure both compute and network isolation of the debugging environment. We believe that this piece of work provides the first of its kind practical real-time debugging of large multi-tier and cloud applications, without requiring any application downtime, and minimal performance impact

    AI: a lightweight system for tolerating concurrency bugs

    Full text link

    Towards Meta-Level Engineering and Tooling for Complex Concurrent Systems

    Get PDF
    With the widespread use of multicore processors, software becomes more and more diverse in its use of parallel computing resources. To address all application requirements, each with the appropriate abstraction, developers mix and match various concurrency abstractions made available to them via libraries and frameworks. Unfortunately, today's tools such as debuggers and profilers do not support the diversity of these abstractions. Instead of enabling developers to reason about the high-level programming concepts, they used to express their programs, the tools work only on the library's implementation level. While this is a common problem also for other libraries and frameworks, the complexity of concurrency exacerbates the issue further, and reasoning on the higher levels of the concurrency abstractions is essential to manage the associated complexity. In this position paper, we identify open research issues and propose to build tools based on a common meta-level interface to enable developers to reasons about their programs based on the high-level concepts they used to implement them

    Understanding the performance of interactive applications

    Get PDF
    Many if not most computer systems are used by human users. The performance of such interactive systems ultimately affects those users. Thus, when measuring, understanding, and improving system performance, it makes sense to consider the human user's perspective. Essentially, the performance of interactive applications is determined by the perceptible lag in handling user requests. So, when characterizing the runtime of an interactive application we need a new approach that focuses on the perceptible lags rather than on overall and general performance characteristics. Such a new characterization approach should enable a new way to profile and improve the performance of interactive applications. Imagine a way that would seek out these perceptible lags and then investigate the causes of these lags. Performance analysts could simply optimize responsible parts of the software, thus eliminating perceptible lag for interactive applications. Unfortunately, existing profiling approaches either incur significant overhead that makes them impractical for an interactive scenario, or they lack the ability to provide insight into the causes of long latencies. An effective approach for interactive applications has to fulfill several requirements such as an accurate view of the causes of performance problems and insignificant perturbation of the interactive application. We propose a new profiling approach that helps developers to understand and improve the perceptible performance of interactive applications and satisfies the above needs

    Spectrum-Based Fault Localization for Diagnosing Concurrency Faults

    Full text link
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.Concurrency faults are activated by specific thread interleavings at runtime. Traditional fault localization techniques and static analysis fall short to diagnose these faults efficiently. Existing dynamic fault-localization techniques focus on pinpointing data-access patterns that are subject to concurrency faults. In this paper, we propose a spectrum-based fault localization technique for localizing faulty code blocks instead. We systematically instrument the program to create versions that run in particular combinations of thread interleavings. We run tests on all these versions and utilize spectrum-based fault localization to correlate detected errors with concurrently executing code blocks. We have implemented a tool and applied our approach on several industrial case studies. Case studies show that our approach can effectively and efficiently localize concurrency faults

    Refinement Techniques in Mining Software Behavior

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Execution Synthesis: A Technique for Automating the Debugging of Software

    Get PDF
    Debugging real systems is hard, requires deep knowledge of the target code, and is time-consuming. Bug reports rarely provide sufficient information for debugging, thus forcing developers to turn into detectives searching for an explanation of how the program could have arrived at the reported failure state. This thesis introduces execution synthesis, a technique for automating this detective work: given a program and a bug report, execution synthesis automatically produces an execution of the program that leads to the reported bug symptoms. Using a combination of static analysis and symbolic execution, the technique “synthesizes” a thread schedule and various required program inputs that cause the bug to manifest. The synthesized execution can be played back deterministically in a regular debugger, like gdb. This is particularly useful in debugging concurrency bugs, because it transforms otherwise non-deterministic bugs into bugs that can be deterministically observed in a debugger. Execution synthesis requires no runtime recording, and no program or hardware modifications, thus incurring no runtime overhead. This makes it practical for use in production systems. This thesis includes a theoretical analysis of execution synthesis as well as empirical evidence that execution synthesis is successful in starting from mere bug reports and reproducing on its own concurrency and memory safety bugs in real systems, taking on the order of minutes. This thesis also introduces reverse execution synthesis, an automated debugging technique that takes a coredump obtained after a failure and automatically computes the suffix of an execution that leads to that coredump. Reverse execution synthesis generates the necessary information to then play back this suffix in a debugger deterministically as many times as needed to complete the debugging process. Since it synthesizes an execution suffix instead of the entire execution, reverse execution is particularly well suited for arbitrarily long executions in which the failure and its root cause occur within a short time span, so developers can use a short execution suffix to debug the problem. The thesis also shows how execution synthesis can be combined with recording techniques in order to automatically classify data races and to efficiently debug deadlock bugs
    corecore