35,910 research outputs found

    EKSPLOITASI INSTRUCTION-LEVEL PARALELLISM (ILP) PADA UNIPROCESSOR

    Get PDF
    Saat ini para ilmuwan melakukan banyak penelitian dalam rangka meningkatkan performa komputer.  Beberapa diantaranya mengkhususkan diri dalam mengembangkan parallelism baik pada Bit-Level Parallelism, Instruction-Level Parallelism maupun dengan konsep baru yang disebut Thread-Level Parallelism. Dengan dua sudut pandang yang berbeda, Instruction-Level Parallelism menghadapi kendala yang dalam eksploitasinya.  Ketika “perseteruan” antara arsitektur dengan multiprocessor dengan perancangan uniprocessor yang sangat cepat masih ada, Instruction-Level Parallelism dapat mengambil peran penting untuk mengoptimisasi keduanya

    Efficient resources assignment schemes for clustered multithreaded processors

    Get PDF
    New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version

    Object oriented execution model (OOM)

    Get PDF
    This paper considers implementing the Object Oriented Programming Model directly in the hardware to serve as a base to exploit object-level parallelism, speculation and heterogeneous computing. Towards this goal, we present a new execution model called Object Oriented execution Model - OOM - that implements the OO Programming Models. All OOM hardware structures are objects and the OOM Instruction Set directly utilizes objects while hiding other complex hardware structures. OOM maintains all high-level programming language information until execution time. This enables efficient extraction of available parallelism in OO serial code at execution time with minimal compiler support. Our results show that OOM utilizes the available parallelism better than the OoO (Out-of-Order) modelPeer ReviewedPostprint (published version

    Exploiting instruction-level parallelism : a constructive approach

    Get PDF

    Loop pipelining with resource and timing constraints

    Get PDF
    Developing efficient programs for many of the current parallel computers is not easy due to the architectural complexity of those machines. The wide variety of machine organizations often makes it more difficult to port an existing program than to reprogram it completely. Therefore, powerful translators are necessary to generate effective code and free the programmer from concerns about the specific characteristics of the target machine. This work focuses on techniques to be used by an important class of translators, whose objective is to transform sequential programs into equivalent more parallel programs. The transformations are performed at instruction level in order to exploit low level parallelism and increase memory locality.Most of the current applications are programmed in languages which do not allow us to express parallelism between high-level sentences (as Pascal, C or Fortran). Furthermore, a lot of applications written ten or more years ago are still used today, and it is not feasible to rewrite such applications for many reasons (not only technical reasons, but also economic ones). Translators enable programmers to write the application in a familiar sequential programming language, without concerning their selves with the architecture of the target machine. Current compilers for parallel architectures not only translate a program written on a high-level language to the appropriate machine language, but also perform some transformations in the final code in order to execute the program in a more parallel way. The transformations improve the performance in the execution of the program by making use of the knowledge that the compiler has about the machine architecture. The semantics of the program remain intact after any transformation.Experiments show that limiting parallelization to basic blocks not included in loops limits maximum speedup. This is because loops often comprise a large portion of the parallelism available to be exploited in a program. For this reason, a lot of effort has been devoted in the recent years to parallelize loop execution. Several parallel computer architectures and compilation techniques have been proposed to exploit such a parallelism at different granularities. Multiprocessors exploit coarse grained parallelism by distributing entire loop iterations to different processors. Systems oriented to the high-level synthesis (HLS) of VLSI circuits, superscalar processors and very long instruction word (VLIW) processors exploit fine-grained parallelism at instruction level. This work addresses fine-grained parallelization of loops addressed to the HLS of VLSI circuits. Two algorithms are proposed for resource constraints and for timing constraints. An algorithm to reduce the number of registers required to execute a loop in a given architecture is also proposed.Postprint (published version

    goSLP: Globally Optimized Superword Level Parallelism Framework

    Full text link
    Modern microprocessors are equipped with single instruction multiple data (SIMD) or vector instruction sets which allow compilers to exploit superword level parallelism (SLP), a type of fine-grained parallelism. Current SLP auto-vectorization techniques use heuristics to discover vectorization opportunities in high-level language code. These heuristics are fragile, local and typically only present one vectorization strategy that is either accepted or rejected by a cost model. We present goSLP, a novel SLP auto-vectorization framework which solves the statement packing problem in a pairwise optimal manner. Using an integer linear programming (ILP) solver, goSLP searches the entire space of statement packing opportunities for a whole function at a time, while limiting total compilation time to a few minutes. Furthermore, goSLP optimally solves the vector permutation selection problem using dynamic programming. We implemented goSLP in the LLVM compiler infrastructure, achieving a geometric mean speedup of 7.58% on SPEC2017fp, 2.42% on SPEC2006fp and 4.07% on NAS benchmarks compared to LLVM's existing SLP auto-vectorizer.Comment: Published at OOPSLA 201
    • …
    corecore