32,994 research outputs found

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    A framework for the contextual analysis of computer-based learning environments

    Get PDF

    Lightweight Formal Verification in Classroom Instruction of Reasoning about Functional Code

    Full text link
    In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader

    Assessing the quality of a student-generated question repository

    Get PDF
    We present results from a study that categorizes and assesses the quality of questions and explanations authored by students, in question repositories produced as part of the summative assessment in introductory physics courses over the past two years. Mapping question quality onto the levels in the cognitive domain of Bloom's taxonomy, we find that students produce questions of high quality. More than three-quarters of questions fall into categories beyond simple recall, in contrast to similar studies of student-authored content in different subject domains. Similarly, the quality of student-authored explanations for questions was also high, with approximately 60% of all explanations classified as being of high or outstanding quality. Overall, 75% of questions met combined quality criteria, which we hypothesize is due in part to the in-class scaffolding activities that we provided for students ahead of requiring them to author questions.Comment: 24 pages, 5 figure

    Four approaches to teaching programming

    No full text
    Based on a survey of literature, four different approaches to teaching introductory programming are identified and described. Examples of the practice of each approach are identified representing procedural, visual, and object-oriented programming language paradigms. Each approach is then further analysed, identifying advantages and disadvantages for the student and the teacher. The first approach, code analysis, is analogous to reading before writing, that is, recognising the parts and what they mean. It requires learners to analyse and understand existing code prior to producing their own. An alternative is the building blocks approach, analogous to learning vocabulary, nouns and verbs, before constructing sentences. A third approach is identified as simple units in which learners master solutions to small problems before applying the learned logic to more complex problems. The final approach, full systems, is analogous to learning a foreign language by immersion whereby learners design a solution to a non-trivial problem and the programming concepts and language constructs are introduced only when the solution to the problem requires their application. The conclusion asserts that competency in programming cannot be achieved without mastering each of the approaches, at least to some extent. Use of the approaches in combination could provide novice programmers with the opportunities to acquire a full range of knowledge, understanding, and skills. Several orders for presenting the approaches in the classroom are proposed and analysed reflecting the needs of the learners and teachers. Further research is needed to better understand these and other approaches to teaching programming, not in terms of learner outcomes, but in terms of teachers’ actions and techniques employed to facilitate the construction of new knowledge by the learners. Effective classroom teaching practices could be informed by further investigations into the effect on progression of different toolset choices and combinations of teaching approache
    corecore