39 research outputs found

    A compiler level intermediate representation based binary analysis system and its applications

    Get PDF
    Analyzing and optimizing programs from their executables has received a lot of attention recently in the research community. There has been a tremendous amount of activity in executable-level research targeting varied applications such as security vulnerability analysis, untrusted code analysis, malware analysis, program testing, and binary optimizations. The vision of this dissertation is to advance the field of static analysis of executables and bridge the gap between source-level analysis and executable analysis. The main thesis of this work is scalable static binary rewriting and analysis using compiler-level intermediate representation without relying on the presence of metadata information such as debug or symbolic information. In spite of a significant overlap in the overall goals of several source-code methods and executables-level techniques, several sophisticated transformations that are well-understood and implemented in source-level infrastructures have yet to become available in executable frameworks. It is a well known fact that a standalone executable without any meta data is less amenable to analysis than the source code. Nonetheless, we believe that one of the prime reasons behind the limitations of existing executable frameworks is that current executable frameworks define their own intermediate representations (IR) which are significantly more constrained than an IR used in a compiler. Intermediate representations used in existing binary frameworks lack high level features like abstract stack, variables, and symbols and are even machine dependent in some cases. This severely limits the application of well-understood compiler transformations to executables and necessitates new research to make them applicable. In the first part of this dissertation, we present techniques to convert the binaries to the same high-level intermediate representation that compilers use. We propose methods to segment the flat address space in an executable containing undifferentiated blocks of memory. We demonstrate the inadequacy of existing variable identification methods for their promotion to symbols and present our methods for symbol promotion. We also present methods to convert the physically addressed stack in an executable to an abstract stack. The proposed methods are practical since they do not employ symbolic, relocation, or debug information which are usually absent in deployed executables. We have integrated our techniques with a prototype x86 binary framework called \emph{SecondWrite} that uses LLVM as the IR. The robustness of the framework is demonstrated by handling executables totaling more than a million lines of source-code, including several real world programs. In the next part of this work, we demonstrate that several well-known source-level analysis frameworks such as symbolic analysis have limited effectiveness in the executable domain since executables typically lack higher-level semantics such as program variables. The IR should have a precise memory abstraction for an analysis to effectively reason about memory operations. Our first work of recovering a compiler-level representation addresses this limitation by recovering several higher-level semantics information from executables. In the next part of this work, we propose methods to handle the scenarios when such semantics cannot be recovered. First, we propose a hybrid static-dynamic mechanism for recovering a precise and correct memory model in executables in presence of executable-specific artifacts such as indirect control transfers. Next, the enhanced memory model is employed to define a novel symbolic analysis framework for executables that can perform the same types of program analysis as source-level tools. Frameworks hitherto fail to simultaneously maintain the properties of correct representation and precise memory model and ignore memory-allocated variables while defining symbolic analysis mechanisms. We exemplify that our framework is robust, efficient and it significantly improves the performance of various traditional analyses like global value numbering, alias analysis and dependence analysis for executables. Finally, the underlying representation and analysis framework is employed for two separate applications. First, the framework is extended to define a novel static analysis framework, \emph{DemandFlow}, for identifying information flow security violations in program executables. Unlike existing static vulnerability detection methods for executables, DemandFlow analyzes memory locations in addition to symbols, thus improving the precision of the analysis. DemandFlow proposes a novel demand-driven mechanism to identify and precisely analyze only those program locations and memory accesses which are relevant to a vulnerability, thus enhancing scalability. DemandFlow uncovers six previously undiscovered format string and directory traversal vulnerabilities in popular ftp and internet relay chat clients. Next, the framework is extended to implement a platform-specific optimization for embedded processors. Several embedded systems provide the facility of locking one or more lines in the cache. We devise the first method in literature that employs instruction cache locking as a mechanism for improving the average-case run-time of general embedded applications. We demonstrate that the optimal solution for instruction cache locking can be obtained in polynomial time. Since our scheme is implemented inside a binary framework, it successfully addresses the portability concern by enabling the implementation of cache locking at the time of deployment when all the details of the memory hierarchy are available

    Hybrid STM/HTM for nested transactions in Java

    Get PDF
    Transactional memory (TM) has long been advocated as a promising pathway to more automated concurrency control for scaling concurrent programs running on parallel hardware. Software TM (STM) has the benefit of being able to run general transactional programs, but at the significant cost of overheads imposed to log memory accesses, mediate access conflicts, and maintain other transaction metadata. Recently, hardware manufacturers have begun to offer commodity hardware TM (HTM) support in their processors wherein the transaction metadata is maintained “for free” in hardware. However, HTM approaches are only best-effort: they cannot successfully run all transactional programs, whether because of hardware capacity issues (causing large transactions to fail), or compatibility restrictions on the processor instructions permitted within hardware transactions (causing transactions that execute those instructions to fail). In such cases, programs must include failure-handling code to attempt the computation by some other software means, since retrying the transaction would be futile. This dissertation describes the design and prototype implementation of a dialect of Java, XJ, that supports closed, open nested and boosted transactions. The design of XJ, allows natural expression of layered abstractions for concurrent data structures, while promoting improved concurrency for operations on those abstractions. We also describe how software and hardware schemes can combine seamlessly into a hybrid system in support of transactional programs, allowing use of low-cost HTM when it works, but reverting to STM when it doesn’t. We describe heuristics used to make this choice dynamically and automatically, but allowing the transition back to HTM opportunistically. Both schemes are compatible to allow different threads to run concurrently with either mechanism, while preserving transaction safety. Using a standard synthetic benchmark we demonstrate that HTM offers significant acceleration of both closed and open nested transactions, while yielding parallel scaling up to the limits of the hardware, whereupon scaling in software continues but with the penalty to throughput imposed by software mechanisms

    Optimizing directory-based cache coherence on the RAW architecture

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 181-182).Caches help reduce the effect of long-latency memory requests, by providing a high speed data-path to local memory. However, in multi-processor systems utilizing shared memory, cache coherence protocols are necessary to ensure sequential consistency. Of the multiple coherence protocols developed, the scalability of directory-based schemes makes them ideal for RAW's architecture [1]. Although one such system has been demonstrated as a proof-of-concept, it lacks the ability to meet the requirements of load-intensive, high performance applications. It further provides the application developer with no programming constructs to easily leverage the system. This thesis further develops shared memory support for RAW, by bringing greater programmability and performance to shared memory applications. In doing so, it reveals that shared memory is a practical programming paradigm for developing parallel applications on the RAW architecture.by Satish Ramaswamy.M.Eng

    Signature-Based Protection from Code Reuse Attacks

    Full text link

    Instruction cache optimizations for embedded systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advancing Operating Systems via Aspect-Oriented Programming

    Get PDF
    Operating system kernels are among the most complex pieces of software in existence to- day. Maintaining the kernel code and developing new functionality is increasingly compli- cated, since the amount of required features has risen significantly, leading to side ef fects that can be introduced inadvertedly by changing a piece of code that belongs to a completely dif ferent context. Software developers try to modularize their code base into separate functional units. Some of the functionality or “concerns” required in a kernel, however, does not fit into the given modularization structure; this code may then be spread over the code base and its implementation tangled with code implementing dif ferent concerns. These so-called “crosscutting concerns” are especially dif ficult to handle since a change in a crosscutting concern implies that all relevant locations spread throughout the code base have to be modified. Aspect-Oriented Software Development (AOSD) is an approach to handle crosscutting concerns by factoring them out into separate modules. The “advice” code contained in these modules is woven into the original code base according to a pointcut description, a set of interaction points (joinpoints) with the code base. To be used in operating systems, AOSD requires tool support for the prevalent procedu- ral programming style as well as support for weaving aspects. Many interactions in kernel code are dynamic, so in order to implement non-static behavior and improve performance, a dynamic weaver that deploys and undeploys aspects at system runtime is required. This thesis presents an extension of the “C” programming language to support AOSD. Based on this, two dynamic weaving toolkits – TOSKANA and TOSKANA-VM – are presented to permit dynamic aspect weaving in the monolithic NetBSD kernel as well as in a virtual- machine and microkernel-based Linux kernel running on top of L4. Based on TOSKANA, applications for this dynamic aspect technology are discussed and evaluated. The thesis closes with a view on an aspect-oriented kernel structure that maintains coherency and handles crosscutting concerns using dynamic aspects while enhancing de- velopment methods through the use of domain-specific programming languages

    Code-Reuse Attacks and Defenses

    Get PDF
    Exploitation of memory corruption vulnerabilities in widely used software has been a threat for almost three decades and no end seems to be in sight. In particular, code-reuse techniques such as return-oriented programming offer a robust attack technique that is extensively used to exploit memory corruption vulnerabilities in modern software programs (e.g. web browsers or document viewers). Whereas conventional control-flow attacks (runtime exploits) require the injection of malicious code, code-reuse attacks leverage code that is already present in the address space of an application to undermine the security model of data execution prevention (DEP). In addition, code-reuse attacks in conjunction with memory disclosure attack techniques circumvent the widely applied memory protection model of address space layout randomization (ASLR). To counter this ingenious attack strategy, several proposals for enforcement of control-flow integrity (CFI) and fine-grained code randomization have emerged. In this dissertation, we explore the limitations of existing defenses against code-reuse attacks. In particular, we demonstrate that various coarse-grained CFI solutions can be effectively undermined, even under weak adversarial assumptions. Moreover, we explore a new return-oriented programming attack technique that is solely based on indirect jump and call instructions to evade detection from defenses that perform integrity checks for return addresses. To tackle the limitations of existing defenses, this dissertation introduces the design and implementation of several new countermeasures. First, we present a generic and fine-grained CFI framework for mobile devices targeting ARM-based platforms. This framework preserves static code signatures by instrumenting mobile applications on-the-fly in memory. Second, we tackle the performance and security limitations of existing CFI defenses by introducing hardware-assisted CFI for embedded devices. To this end, we present a CFI-based hardware implementation for Intel Siskiyou Peak using dedicated CFI machine instructions. Lastly, we explore fine-grained code randomization techniques

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Practical Dynamic Symbolic Execution for JavaScript

    Get PDF

    Compiler and Runtime Optimizations for Fine-Grained Distributed Shared Memory Systems

    Get PDF
    Bal, H.E. [Promotor
    corecore