655 research outputs found

    Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing

    Get PDF
    Two multiprocessor system-on-chip (MPSoC) architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC) infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices

    Quick Start Guide to Verilog

    Get PDF
    The classical digital design approach (i.e., manual synthesis and minimization of logic) quickly becomes impractical as systems become more complex. This is the motivation for the modern digital design flow, which uses hardware description languages (HDL) and computer-aided synthesis/minimization to create the final circuitry. The purpose of this book is to provide a quick start guide to the Verilog language, which is one of the two most common languages used to describe logic in the modern digital design flow. This book is intended for anyone that has already learned the classical digital design approach and is ready to begin learning HDL-based design. This book is also suitable for practicing engineers that already know Verilog and need quick reference for syntax and examples of common circuits. This book assumes that the reader already understands digital logic (i.e., binary numbers, combinational and sequential logic design, finite state machines, memory, and binary arithmetic basics). Since this book is designed to accommodate a designer that is new to Verilog, the language is presented in a manner that builds foundational knowledge first before moving into more complex topics. As such, Chaps. 1–6 provide a comprehensive explanation of the basic functionality in Verilog to model combinational and sequential logic. Chapters 7–11 focus on examples of common digital systems such as finite state machines, memory, arithmetic, and computers. For a reader that is using the book as a reference guide, it may be more practical to pull examples from Chaps. 7–11 as they use the full functionality of the language as it is assumed the reader has gained an understanding of it in Chaps. 1–6. For a Verilog novice, understanding the history and fundamentals of the language will help form a comprehensive understanding of the language; thus it is recommended that the early chapters are covered in the sequence they are written

    Static resource models for code generation of embedded processors

    Get PDF
    xii+129hlm.;24c
    • …
    corecore