75 research outputs found

    Design Heuristics in Engineering Concept Generation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94902/1/j.2168-9830.2012.tb01121.x.pd

    Does Thinking in Opposites in Order to Think Differently Improve Creativity?

    Get PDF
    In this paper, we focus on the link between thinking in opposites and creativity. Thinking in opposites requires an intuitive, productive strategy, which may enhance creativity. Given the importance of creativity for the well-being of individuals and society, finding new ways to enhance it represents a valuable goal in both professional and personal contexts. We discuss the body of evidence that exists concerning the importance of the first representation of the structure of a problem to be solved, which determines the baseline representation and sets limits on the area within which a problem solver will explore. We then review a variety of interventions described in the literature on creativity and insight problem solving that were designed to overcome fixedness and encourage people to move away from stereotypical solutions. Special attention is paid to the research carried out in the context of problem solving, which provides evidence that prompting people to "think in opposites" is beneficial. We suggest that an extended investigation of the effects of this strategy in various types of tasks related to creativity is an interesting line of research to follow. We discuss the rationale supporting this claim and identify specific questions, both theoretical and methodological, for future research to address

    Design Choices and Adoption Processes: from Engineering Designed Products to Services

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Student Expectations: The effect of student background and experience

    Get PDF
    CONTEXT The perspectives and previous experiences that students bring to their programs of study can affect their approaches to study and the depth of learning that they achieve Prosser & Trigwell, 1999; Ramsden, 2003). Graduate outcomes assume the attainment of welldeveloped independent learning skills which can be transferred to the work-place. PURPOSE This 5-year longitudinal study investigates factors influencing students’ approaches to learning in the fields of Engineering, Software Engineering, and Computer Science, at two higher education institutes delivering programs of various levels in Australia and New Zealand. The study aims to track the development of student approaches to learning as they progress through their program. Through increased understanding of students’ approaches, faculty will be better able to design teaching and learning strategies to meet the needs of an increasingly diverse student body. This paper reports on the first stage of the project. APPROACH In August 2017, we ran a pilot of our survey using the Revised Study Process Questionnaire(Biggs, Kember, & Leung, 2001) and including some additional questions related to student demographics and motivation for undertaking their current program of study. Data were analysed to evaluate the usefulness of data collected and to understand the demographics of the student cohort. Over the period of the research, data will be collected using the questionnaire and through focus groups and interviews. RESULTS Participants provided a representative sample, and the data collected was reasonable, allowing the questionnaire design to be confirmed. CONCLUSIONS At this preliminary stage, the study has provided insight into the student demographics at both institutes and identified aspects of students’ modes of engagement with learning. Some areas for improvement of the questionnaire have been identified, which will be implemented for the main body of the study

    A Customer Value Assessment Process (CVAP) for Ballistic Missile Defense

    Get PDF
    A systematic customer value assessment process (CVAP) was developed to give system engineering teams the capability to qualitatively and quantitatively assess customer values. It also provides processes and techniques used to create and identify alternatives, evaluate alternatives in terms of effectiveness, cost, and risk. The ultimate goal is to provide customers (or decision makers) with objective and traceable procurement recommendations. The creation of CVAP was driven by an industry need to provide ballistic missile defense (BMD) customers with a value proposition of contractors’ BMD systems. The information that outputs from CVAP can be used to guide BMD contractors in formulating a value proposition, which is used to steer customers to procure their BMD system(s) instead of competing system(s). The outputs from CVAP also illuminate areas where systems can be improved to stay relevant with customer values by identifying capability gaps. CVAP incorporates proven approaches and techniques appropriate for military applications. However, CVAP is adaptable and may be applied to business, engineering, and even personal every-day decision problems and opportunities. CVAP is based on the systems decision process (SDP) developed by Gregory S. Parnell and other systems engineering faculty at the Unites States Military Academy (USMA). SDP combines Value-Focused Thinking (VFT) decision analysis philosophy with Multi-Objective Decision Analysis (MODA) quantitative analysis of alternatives. CVAP improves SDP’s qualitative value model by implementing Quality Function Deployment (QFD), solution design implements creative problem solving techniques, and the qualitative value model by adding cost analysis and risk assessment processes practiced by the U.S DoD and industry. CVAP and SDP fundamentally differ from other decision making approaches, like the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), by distinctly separating the value/utility function assessment process with the ranking of alternatives. This explicit value assessment allows for straightforward traceability of the specific factors that influence decisions, which illuminates the tradeoffs involved in making decisions with multiple objectives. CVAP is intended to be a decision support tool with the ultimate purpose of helping decision makers attain the best solution and understanding the differences between the alternatives. CVAP does not include any processes for implementation of the alternative that the customer selects. CVAP is applied to ballistic missile defense (BMD) to give contractors ideas on how to use it. An introduction of BMD, unique BMD challenges, and how CVAP can improve the BMD decision making process is presented. Each phase of CVAP is applied to the BMD decision environment. CVAP is applied to a fictitious BMD example

    Process intensification education contributes to sustainable development goals: Part 2

    Get PDF
    Achieving the United Nations sustainable development goals requires industry and society to develop tools and processes that work at all scales, enabling goods delivery, services, and technology to large conglomerates and remote regions. Process Intensification (PI) is a technological advance that promises to deliver means to reach these goals, but higher education has yet to totally embrace the program. Here, we present practical examples on how to better teach the principles of PI in the context of the Bloom's taxonomy and summarise the current industrial use and the future demands for PI, as a continuation of the topics discussed in Part 1. In the appendices, we provide details on the existing PI courses around the world, as well as teaching activities that are showcased during these courses to aid students’ lifelong learning. The increasing number of successful commercial cases of PI highlight the importance of PI education for both students in academia and industrial staff.We acknowledge the sponsors of the Lorentz’ workshop on“Educating in PI”: The MESA+Institute of the University of Twente,Sonics and Materials (USA) and the PIN-NL Dutch Process Intensi-fication Network. DFR acknowledges support by The Netherlands Centre for Mul-tiscale Catalytic Energy Conversion (MCEC), an NWO Gravitationprogramme funded by the Ministry of Education, Culture and Sci-ence of the government of The Netherlands. NA acknowledges the Deutsche Forschungsgemeinschaft (DFG)- TRR 63¨Integrierte Chemische Prozesse in flüssigen Mehrphasen-systemen¨(Teilprojekt A10) - 56091768. The participation by Robert Weber in the workshop and thisreport was supported by Laboratory Directed Research and Devel-opment funding at Pacific Northwest National Laboratory (PNNL).PNNL is a multiprogram national laboratory operated for theUS Department of Energy by Battelle under contract DE-AC05-76RL0183

    Study of vehicle brake systems based on environment-based design method

    Get PDF
    This thesis is intended to validate and develop a progressive design method -- Environment-based Design (EBD). Designers often find them in predicament, where they struggle to develop expertise in the design process. The main reason is that they lack necessary guidance of an ideal design method. Many design methods have been developed, but none has achieved wide acceptance due to the limitations. Fortunately. the advent of Environment-based Design brings us new chance, though some effort still needs to make it optimized. The case studies, simulative design of early mechanical brake system and analysis of vehicle brake system evolution, were used to explore the validity of EBD. Especially, existing work on Environment-based Design was summarized, by focusing on environment system analysis, design driving force identification, design requirement extraction and analysis, and design concept generation and evaluation. Principles of EBD were comprehensively applied and verified in the simulative design. Also, the vehicle brake system evolution was studied to investigate the laws or trends how products evolves. The findings indicated that Environment-based Design is a valid design method, which is proved to be an effective tool for formalizing the design process. Design driving forces are conflicts between increasing human needs and current product functions. Design requirements can be obtained by analyzing product environment relations (including conflicts). A quality design concept should satisfy the design requirements, and remove the environment conflicts. Generally, EBD can greatly increase design effectiveness and efficienc

    International Academic Symposium of Social Science 2022

    Get PDF
    This conference proceedings gathers work and research presented at the International Academic Symposium of Social Science 2022 (IASSC2022) held on July 3, 2022, in Kota Bharu, Kelantan, Malaysia. The conference was jointly organized by the Faculty of Information Management of Universiti Teknologi MARA Kelantan Branch, Malaysia; University of Malaya, Malaysia; Universitas Pembangunan Nasional Veteran Jakarta, Indonesia; Universitas Ngudi Waluyo, Indonesia; Camarines Sur Polytechnic Colleges, Philippines; and UCSI University, Malaysia. Featuring experienced keynote speakers from Malaysia, Australia, and England, this proceeding provides an opportunity for researchers, postgraduate students, and industry practitioners to gain knowledge and understanding of advanced topics concerning digital transformations in the perspective of the social sciences and information systems, focusing on issues, challenges, impacts, and theoretical foundations. This conference proceedings will assist in shaping the future of the academy and industry by compiling state-of-the-art works and future trends in the digital transformation of the social sciences and the field of information systems. It is also considered an interactive platform that enables academicians, practitioners and students from various institutions and industries to collaborate
    • …
    corecore