62 research outputs found

    Critical branching processes in digital memcomputing machines

    Full text link
    Memcomputing is a novel computing paradigm that employs time non-locality (memory) to solve combinatorial optimization problems. It can be realized in practice by means of non-linear dynamical systems whose point attractors represent the solutions of the original problem. It has been previously shown that during the solution search digital memcomputing machines go through a transient phase of avalanches (instantons) that promote dynamical long-range order. By employing mean-field arguments we predict that the distribution of the avalanche sizes follows a Borel distribution typical of critical branching processes with exponent τ=3/2\tau= 3/2. We corroborate this analysis by solving various random 3-SAT instances of the Boolean satisfiability problem. The numerical results indicate a power-law distribution with exponent τ=1.51±0.02\tau = 1.51 \pm 0.02, in very good agreement with the mean-field analysis. This indicates that memcomputing machines self-tune to a critical state in which avalanches are characterized by a branching process, and that this state persists across the majority of their evolution.Comment: 5 pages, 3 figure

    MemComputing Integer Linear Programming

    Full text link
    Integer linear programming (ILP) encompasses a very important class of optimization problems that are of great interest to both academia and industry. Several algorithms are available that attempt to explore the solution space of this class efficiently, while requiring a reasonable compute time. However, although these algorithms have reached various degrees of success over the years, they still face considerable challenges when confronted with particularly hard problem instances, such as those of the MIPLIB 2010 library. In this work we propose a radically different non-algorithmic approach to ILP based on a novel physics-inspired computing paradigm: Memcomputing. This paradigm is based on digital (hence scalable) machines represented by appropriate electrical circuits with memory. These machines can be either built in hardware or, as we do here, their equations of motion can be efficiently simulated on our traditional computers. We first describe a new circuit architecture of memcomputing machines specifically designed to solve for the linear inequalities representing a general ILP problem. We call these self-organizing algebraic circuits, since they self-organize dynamically to satisfy the correct (algebraic) linear inequalities. We then show simulations of these machines using MATLAB running on a single core of a Xeon processor for several ILP benchmark problems taken from the MIPLIB 2010 library, and compare our results against a renowned commercial solver. We show that our approach is very efficient when dealing with these hard problems. In particular, we find within minutes feasible solutions for one of these hard problems (f2000 from MIPLIB 2010) whose feasibility, to the best of our knowledge, has remained unknown for the past eight years

    Self-Averaging of Digital MemComputing Machines

    Full text link
    Digital MemComputing machines (DMMs) are a new class of computing machines that employ non-quantum dynamical systems with memory to solve combinatorial optimization problems. Here, we show that the time to solution (TTS) of DMMs follows an inverse Gaussian distribution, with the TTS self-averaging with increasing problem size, irrespective of the problem they solve. We provide both an analytical understanding of this phenomenon and numerical evidence by solving instances of the 3-SAT (satisfiability) problem. The self-averaging property of DMMs with problem size implies that they are increasingly insensitive to the detailed features of the instances they solve. This is in sharp contrast to traditional algorithms applied to the same problems, illustrating another advantage of this physics-based approach to computation.Comment: 9 pages, 13 figure
    • …
    corecore