1,541 research outputs found

    Generic Fibrational Induction

    Full text link
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs' elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, a sound induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of a particular syntactic form. We establish the soundness of our generic induction rule by reducing induction to iteration. We then show how our generic induction rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The first of these lies outside the scope of Hermida and Jacobs' work because it is not polynomial, and as far as we are aware, no induction rules have been known to exist for the second and third in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.Comment: For Special Issue from CSL 201

    A principled approach to programming with nested types in Haskell

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the buildcombinator, and immediately consumed using the foldcombinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines buildcombinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell
    corecore