129 research outputs found

    Instantaneous Termination in Pure Esterel

    Full text link

    Causality in the Semantics of Esterel: Revisited

    Full text link
    We re-examine the challenges concerning causality in the semantics of Esterel and show that they pertain to the known issues in the semantics of Structured Operational Semantics with negative premises. We show that the solutions offered for the semantics of SOS also provide answers to the semantic challenges of Esterel and that they satisfy the intuitive requirements set by the language designers

    An Algebra of Synchronous Scheduling Interfaces

    Full text link
    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Approximate Reachability for Dead Code Elimination in Esterel*

    Get PDF
    Esterel is an imperative synchronous programming language for the design of reactive systems. Esterel* extends Esterel with a non-instantaneous jump instruction (compatible with concurrency, preemption, etc.) so as to enable powerful source-to-source program transformations, amenable to formal verification. In this work, we propose an approximate reachability algorithm for Esterel* and use its output to remove dead code. We prove the correctness of our techniques

    SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications

    Get PDF
    We present a new visual language, SCCharts, designed for specifying safety-critical reactive systems. SCCharts uses a new statechart notation and provides deterministic concurrency based on a synchronous model of computation (MoC), without restrictions common to previous synchronous MoCs. Specifically, we lift earlier limitations on sequential accesses to shared variables, by leveraging the sequentially constructive MoC. The key features of SCCharts are defined by a very small set of elements, the Core SCCharts, consisting of state machines plus fork/join concurrency. Conversely, Extended SCCharts contain a rich set of advanced features, such as different abort types, signals, history transitions, etc., all of which can be reduced via model-to-model transformations into Core SCCharts. This approach enables a simple yet efficient compilation strategy and aids verification and certification

    Instantaneous Transitions in Esterel

    Get PDF
    Esterel is an imperative synchronous programming language for the specification of deterministic concurrent reactive systems. While providing the usual control-flow constructs—sequences, loops, conditionals, and exceptions—its lack of a goto instruction makes the programming of arbitrary finite state machines awkward and hinders the design of source-to-source program transformations. We previously introduced to Esterel a non-instantaneous gotopause instruction, which prevents the synchronous execution of code before and code after the transition. Here, we tackle instantaneous transitions. Concurrency demands we assign scopes and priorities to gotos, so we extend Esterel's exception handling mechanism to allow exception handlers in arbitrary locations. We advocate for and formalize the resulting language. We observe that instantaneous gotos complement but do not replace non-instantaneous gotopauses

    A Concurrent Reactive Esterel Processor based on Multi-Threading

    Get PDF
    The synchronous language Esterel is well-suited for programming control-dominated reactive systems at the system level. It provides non-traditional control structures, in particular concurrency and various forms of preemption, which allow to concisely express reactive behavior. As these control structures cannot be mapped easily onto traditional, sequential processors, an alternative approach that has emerged recently makes use of special-purpose reactive processors. However, the designs proposed so far have limitations regarding completeness of the language support, and did not really take advantage of compile-time knowledge to optimize resource usage. This paper presents a reactive processor, the Kiel Esterel Processor 3a (KEP3a), and its compiler. The KEP3a improves on earlier designs in several areas; most notable are the support for exception handling and the provision of context-dependent preemption handling instructions. The KEP3a compiler presented here is to our knowledge the first for multi-threaded reactive processors. The translation of Esterel's preemption constructs onto KEP3a assembler is straightforward; however, a challenge is the correct and efficient representation of Esterel's concurrency. The compiler generates code that respects data and control dependencies using the KEP3a priority-based scheduling mechanism. We present a priority assignment approach that makes use of a novel concurrent control flow graph and has a complexity that in practice tends to be linear in the size of the program. Unlike earlier Esterel compilation schemes, this approach avoids unnecessary context switches by considering each thread's actual execution state at run time. Furthermore, it avoids code replication present in other approaches

    Towards Coq-verified Esterel Semantics and Compiling

    Full text link
    This paper focuses on semantics of the Esterel synchronous programming language. In particular, in addition to the usual behavioral (CBS) and state (CSS) semantics, it introduces a novel microstep semantics which does not need the Can potential function. Formal proofs in Coq of the equivalence between the CBS and CSS semantics and of the refinement between the CSS and microstep semantics are also provided

    A sequentially constructive circuit semantics for Esterel

    Get PDF
    Static Single Assignment (SSA) is an established concept that facilitates various program optimizations. However, it is typically restricted to sequential programming. We present an approach that extends SSA for concurrent, reactive programming, specifically for the synchronous language Esterel. This extended SSA transformation expands the class of programs that can be compiled by existing Esterel compilers without causality problems. It also offers a new, efficient solution for the well-studied signal reincarnation problem. Finally, our approach rules out speculation/backtracking, unlike the recently proposed sequentially constructive model of computation
    • …
    corecore