456 research outputs found

    Mobility of Spatial Parallel Manipulators

    Get PDF

    An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains with Applications in Robotics and Mechanism Theory

    Full text link
    The motions of mechanisms can be described in terms of screw coordinates by means of an exponential mapping. The product of exponentials (POE) describes the configuration of a chain of bodies connected by lower pair joints. The kinematics is thus given in terms of joint screws. The POE serves to express loop constraints for mechanisms as well as the forward kinematics of serial manipulators. Besides the compact formulations, the POE gives rise to purely algebraic relations for derivatives wrt. joint variables. It is known that the partial derivatives of the instantaneous joint screws (columns of the geometric Jacobian) are determined by Lie brackets the joint screws. Lesser-known is that derivative of arbitrary order can be compactly expressed by Lie brackets. This has significance for higher-order forward/inverse kinematics and dynamics of robots and multibody systems. Various relations were reported but are scattered in the literature and insufficiently recognized. This paper aims to provide a comprehensive overview of the relevant relations. Its original contributions are closed form and recursive relations for higher-order derivatives and Taylor expansions of various kinematic relations. Their application to kinematic control and dynamics of robotic manipulators and multibody systems is discussed

    Redundant Unilaterally Actuated Kinematic Chains: Modeling and Analysis

    Get PDF
    Unilaterally Actuated Robots (UAR)s are a class of robots defined by an actuation that is constrained to a single sign. Cable robots, grasping, fixturing and tensegrity systems are certain applications of UARs. In recent years, there has been increasing interest in robotic and other mechanical systems actuated or constrained by cables. In such systems, an individual constraint is applied to a body of the mechanism in the form of a pure force which can change its magnitude but cannot reverse its direction. This uni-directional actuation complicates the design of cable-driven robots and can result in limited performance. Cable Driven Parallel Robot (CDPR)s are a class of parallel mechanisms where the actuating legs are replaced by cables. CDPRs benefit from the higher payload to weight ratio and increased rigidity. There is growing interest in the cable actuation of multibody systems. There are potential applications for such mechanisms where low moving inertia is required. Cable-driven serial kinematic chain (CDSKC) are mechanisms where the rigid links form a serial kinematic chain and the cables are arranged in a parallel configuration. CDSKC benefits from the dexterity of the serial mechanisms and the actuation advantages of cable-driven manipulators. Firstly, the kinematic modeling of CDSKC is presented, with a focus on different types of cable routings. A geometric approach based on convex cones is utilized to develop novel cable actuation schemes. The cable routing scheme and architecture have a significant effect on the performance of the robot resulting in a limited workspace and high cable forces required to perform a desired task. A novel cable routing scheme is proposed to reduce the number of actuating cables. The internal routing scheme is where, in addition to being externally routed, the cable can be re-routed internally within the link. This type of routing can be considered as the most generalized form of the multi-segment pass-through routing scheme where a cable segment can be attached within the same link. Secondly, the analysis for CDSKCs require extensions from single link CDPRs to consider different routings. The conditions to satisfy wrench-closure and the workspace analysis of different multi-link unilateral manipulators are investigated. Due to redundant and constrained actuation, it is possible for a motion to be either infeasible or the desired motion can be produced by an infinite number of different actuation profiles. The motion generation of the CDSKCs with a minimal number of actuating cables is studied. The static stiffness evaluation of CDSKCs with different routing topologies and isotropic stiffness conditions were investigated. The dexterity and wrench-based metrics were evaluated throughout the mechanism's workspace. Through this thesis, the fundamental tools required in studying cable-driven serial kinematic chains have been presented. The results of this work highlight the potential of using CDSKCs in bio-inspired systems and tensegrity robots

    Mobile manipulators collision-free trajectory planning with regard to end-effector vibrations elimination

    Get PDF
    A sub-optimal point-to-point trajectory planning method for mobile manipulators operating in the workspace including obstacles taking into account the damping of the end-effector vibrations is presented. The proposed solution is based on extended Jacobian approach and redundancy resolution at the acceleration level. Fulfilment of the condition stopping the mobile manipulator at the destination point is guaranteed, which leads to elimination of the end-effector vibrations and significantly increases positioning accuracy. The effectiveness of the presented method is shown and compared to the classical Jacobian pseudo inverse approach. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2, 0) class and SCARA-type holonomic manipulator operating in two-dimensional task space including obstacle is also presented

    A Mechatronic Perspective on Robotic Arms and End-Effectors

    Get PDF

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    End-effector vibrations reduction in trajectory tracking for mobile manipulator

    Get PDF
    A method of motion planning for a mobile manipulator taking into account damping the end-effector vibrations is presented. The primary task of the robot is to trace a given end-effector trajectory. The redundant degrees of freedom are used to fulfil secondary objectives such as minimisation of platform kinetic energy and maximisation of holonomic manipulability measure, which leads to reduction of the end-effector vibrations. The method is based on Jacobian pseudo inverse at the acceleration level. Nonholonomic constraints in a Pfaffian form are explicitly incorporated to the control algorithm. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2, 0) class and SCARA-type holonomic manipulator operating in two-dimensional task space is also presented
    corecore