480 research outputs found

    A deep learning framework based on Koopman operator for data-driven modeling of vehicle dynamics

    Full text link
    Autonomous vehicles and driving technologies have received notable attention in the past decades. In autonomous driving systems, \textcolor{black}{the} information of vehicle dynamics is required in most cases for designing of motion planning and control algorithms. However, it is nontrivial for identifying a global model of vehicle dynamics due to the existence of strong non-linearity and uncertainty. Many efforts have resorted to machine learning techniques for building data-driven models, but it may suffer from interpretability and result in a complex nonlinear representation. In this paper, we propose a deep learning framework relying on an interpretable Koopman operator to build a data-driven predictor of the vehicle dynamics. The main idea is to use the Koopman operator for representing the nonlinear dynamics in a linear lifted feature space. The approach results in a global model that integrates the dynamics in both longitudinal and lateral directions. As the core contribution, we propose a deep learning-based extended dynamic mode decomposition (Deep EDMD) algorithm to learn a finite approximation of the Koopman operator. Different from other machine learning-based approaches, deep neural networks play the role of learning feature representations for EDMD in the framework of the Koopman operator. Simulation results in a high-fidelity CarSim environment are reported, which show the capability of the Deep EDMD approach in multi-step prediction of vehicle dynamics at a wide operating range. Also, the proposed approach outperforms the EDMD method, the multi-layer perception (MLP) method, and the Extreme Learning Machines-based EDMD (ELM-EDMD) method in terms of modeling performance. Finally, we design a linear MPC with Deep EDMD (DE-MPC) for realizing reference tracking and test the controller in the CarSim environment.Comment: 12 pages, 10 figures, 1 table, and 2 algorithm

    ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

    Full text link
    Physical simulations produce excellent predictions of weather effects. Neural radiance fields produce SOTA scene models. We describe a novel NeRF-editing procedure that can fuse physical simulations with NeRF models of scenes, producing realistic movies of physical phenomena inthose scenes. Our application -- Climate NeRF -- allows people to visualize what climate change outcomes will do to them. ClimateNeRF allows us to render realistic weather effects, including smog, snow, and flood. Results can be controlled with physically meaningful variables like water level. Qualitative and quantitative studies show that our simulated results are significantly more realistic than those from state-of-the-art 2D image editing and 3D NeRF stylization.Comment: project page: https://climatenerf.github.io

    A Neural Network Ensemble approach to System Identification

    Get PDF
    We present a new algorithm for learning unknown governing equations from trajectory data, using and ensemble of neural networks. Given samples of solutions x(t) to an unknown dynamical system xË™(t) = f(t, x(t)), we approximate the function f using an ensemble of neural networks. We express the equation in integral form and use Euler method to predict the solution at every successive time step using at each iteration a different neural network as a prior for f. This procedure yields M-1 time-independent networks, where M is the number of time steps at which x(t) is observed. Finally, we obtain a single function f(t, x(t)) by neural network interpolation. Unlike our earlier work, where we numerically computed the derivatives of data, and used them as target in a Lipschitz regularized neural network to approximate f, our new method avoids numerical differentiations, which are unstable in presence of noise. We test the new algorithm on multiple examples both with and without noise in the data. We empirically show that generalization and recovery of the governing equation improve by adding a Lipschitz regularization term in our loss function and that this method improves our previous one especially in presence of noise, when numerical differentiation provides low quality target data. Finally, we compare our results with the method proposed by Raissi, et al. arXiv:1801.01236 (2018) and with SINDy

    A Neural Network Ensemble approach to System Identification

    Get PDF
    We present a new algorithm for learning unknown governing equations from trajectory data, using and ensemble of neural networks. Given samples of solutions x(t) to an unknown dynamical system xË™(t) = f(t, x(t)), we approximate the function f using an ensemble of neural networks. We express the equation in integral form and use Euler method to predict the solution at every successive time step using at each iteration a different neural network as a prior for f. This procedure yields M-1 time-independent networks, where M is the number of time steps at which x(t) is observed. Finally, we obtain a single function f(t, x(t)) by neural network interpolation. Unlike our earlier work, where we numerically computed the derivatives of data, and used them as target in a Lipschitz regularized neural network to approximate f, our new method avoids numerical differentiations, which are unstable in presence of noise. We test the new algorithm on multiple examples both with and without noise in the data. We empirically show that generalization and recovery of the governing equation improve by adding a Lipschitz regularization term in our loss function and that this method improves our previous one especially in presence of noise, when numerical differentiation provides low quality target data. Finally, we compare our results with the method proposed by Raissi, et al. arXiv:1801.01236 (2018) and with SINDy

    Traffic Scene Perception for Automated Driving with Top-View Grid Maps

    Get PDF
    Ein automatisiertes Fahrzeug muss sichere, sinnvolle und schnelle Entscheidungen auf Basis seiner Umgebung treffen. Dies benötigt ein genaues und recheneffizientes Modell der Verkehrsumgebung. Mit diesem Umfeldmodell sollen Messungen verschiedener Sensoren fusioniert, gefiltert und nachfolgenden Teilsysteme als kompakte, aber aussagekräftige Information bereitgestellt werden. Diese Arbeit befasst sich mit der Modellierung der Verkehrsszene auf Basis von Top-View Grid Maps. Im Vergleich zu anderen Umfeldmodellen ermöglichen sie eine frühe Fusion von Distanzmessungen aus verschiedenen Quellen mit geringem Rechenaufwand sowie eine explizite Modellierung von Freiraum. Nach der Vorstellung eines Verfahrens zur Bodenoberflächenschätzung, das die Grundlage der Top-View Modellierung darstellt, werden Methoden zur Belegungs- und Elevationskartierung für Grid Maps auf Basis von mehreren, verrauschten, teilweise widersprüchlichen oder fehlenden Distanzmessungen behandelt. Auf der resultierenden, sensorunabhängigen Repräsentation werden anschließend Modelle zur Detektion von Verkehrsteilnehmern sowie zur Schätzung von Szenenfluss, Odometrie und Tracking-Merkmalen untersucht. Untersuchungen auf öffentlich verfügbaren Datensätzen und einem Realfahrzeug zeigen, dass Top-View Grid Maps durch on-board LiDAR Sensorik geschätzt und verlässlich sicherheitskritische Umgebungsinformationen wie Beobachtbarkeit und Befahrbarkeit abgeleitet werden können. Schließlich werden Verkehrsteilnehmer als orientierte Bounding Boxen mit semantischen Klassen, Geschwindigkeiten und Tracking-Merkmalen aus einem gemeinsamen Modell zur Objektdetektion und Flussschätzung auf Basis der Top-View Grid Maps bestimmt
    • …
    corecore