14 research outputs found

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    Proceedings of the 10th international conference on disability, virtual reality and associated technologies (ICDVRAT 2014)

    Get PDF
    The proceedings of the conferenc

    Motion-based Interaction for Head-Mounted Displays

    Get PDF
    Recent advances in affordable sensing technologies have enabled motion-based interaction (MbI) for head-mounted displays (HMDs). Unlike traditional input devices like the mouse and keyboard, which often offer comparatively limited interaction possibilities (e.g., single-touch interaction), MbI does not have these constraints and is more natural because they reflect more closely people do things in real life. However, several issues exist in MbI for HMDs due to the technical limitations of the sensing and tracking devices, higher degrees of freedom afforded to users, and limited research in the area due to the rapid advancement of HMDs and tracking technologies. This thesis first outlines four core challenges in the design space of MbI for HMDs: (1) boundary awareness for hand-based interaction, (2) efficient hands-free head-based interface for HMDs, (3) efficient and feasible full-body interaction for general tasks with HMDs, and (4) accessible full-body interaction for applications in HMDs. Then, this thesis presents an investigation into the contributions of these challenges in MbI for HMDs. The first challenge is addressed by providing visual feedback during interaction tailored for such technologies. The second challenge is addressed by using a circular layout with a go-and-hit selection style for head-based interaction using text entry as the scenario. In addition, this thesis explores additional interaction mechanisms that leverage the affordances of these techniques, and in doing so, we propose directional full-body motions as an interaction approach to perform general tasks with HDMs as an example to address the third challenge. The last challenge is addressed by (1) exploring the differences between performing full-body interaction for HMDs and common displays (i.e., TV) and (2) providing a set of design guidelines that are specific to current and future HMDs. The results of this thesis show that: (1) visual methods for boundary awareness can help with mid-air hand-based interaction in HMDs; (2) head-based interaction and interfaces that take advantages of MbI, such as a circular interface, can be very efficient and low error hands-free input method for HMDs; (3) directional full-body interaction can be a feasible and efficient interaction approach for general tasks involving HMDs; (4) full-body interaction for applications in HMDs should be designed differently than for traditional displays. In addition to these results, this thesis provides a set of design recommendations and takeaway messages for MbI for HMDs

    Collaborative Game-based Learning - Automatized Adaptation Mechanics for Game-based Collaborative Learning using Game Mastering Concepts

    Get PDF
    Learning and playing represent two core aspects of the information and communication society nowadays. Both issues are subsumed in Digital Education Games, one major field of Serious Games. Serious Games combine concepts of gaming with a broad range of application fields: among others, educational sectors and training or health and sports, but also marketing, advertisement, political education, and other societally relevant areas such as climate, energy, and safety. This work focuses on collaborative learning games, which are Digital Educational Games that combine concepts from collaborative learning with game concepts and technology. Although Digital Educational Games represent a promising addition to existing learning and teaching methods, there are different challenges opposing their application. The tension between a game that is supposed to be fun and the facilitation of serious content constitutes a central challenge to game design. The often high technical complexity and especially the instructors' lack of control over the game represent further challenges. Beyond that, the distinct heterogeneity of learners who often have different play styles, states of knowledge, learning speed, and soft skills, such as teamwork or communication skills, forms a pivotal problem. Apart from that, the vital role of the instructor needs to be taken into account. Within the scope of this dissertation, the problems mentioned above are analyzed, concepts to solve them introduced, and methods developed to address them. The first major contribution contains the conceptualization of a framework for adaptation of collaborative multiplayer games as well as for the control of those games at run-time through an instructor using the Game Master principle. The core concept hereby addresses the design of a model to represent heterogeneous groups and to represent collaborative Serious Games. Based on that, a novel concept for adaptation of collaborative multiplayer games is developed, implemented, and evaluated. Automatic recognition and interpretation of game situations, as well as determination of the most well suited adaptation based on the recognized situations, is a major challenge here. Further, a concept is developed to integrate an instructor in a meaningful way into the course of the game, giving him/her the necessary resources to recognize problems and to intervene and adapt the game at run-time. Therefore, it will be taken into account that the elaborated concepts are applicable in a generic way independent of the underlying game. The second major contribution of this work is the conceptualization and design of a simulation of players and learners in a collaborative multiplayer game that behave realistically based on a player, learner, and interaction model. This is supposed to enable an evaluation of the adaptation and Game Mastering concepts using freely configurable player and learner types. The concepts introduced and developed within this thesis have been thoroughly evaluated using a twofold approach. As a test environment, a collaborative multiplayer Serious Game was designed and implemented. Within that simulation environment, the developed Game Mastering and adaptation concepts were assessed and tested with large sets of virtual learners. Additionally, the concepts were evaluated with real users. Therefore, two different evaluation studies with a total of 60 participants were conducted. The results of the conducted evaluations help to broaden the areas of application of Serious Games as well as to improve their applicability, hence raising acceptance among instructors. The models, architectures, and software solutions developed within this thesis thus build a foundation for further research of multiplayer Serious Games

    Proceedings of the 9th international conference on disability, virtual reality and associated technologies (ICDVRAT 2012)

    Get PDF
    The proceedings of the conferenc

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Number 29

    Get PDF

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction
    corecore